Advertisement

Acta Biologica Hungarica

, Volume 61, Issue 3, pp 344–355 | Cite as

The Plackett-Burman Design in Optimization of Media Components for Biomass Production of Lactobacillus Rhamnosus Oxy

  • A. Waśko
  • Monika Kordowska-Wiater
  • M. Podleśny
  • Magdalena Polak-BereckaEmail author
  • Z. Targoński
  • Agnieszka Kubik-Komar
Article

Abstract

The central composite design was developed to search for an optimal medium for the growth of Lactobacillus rhamnosus OXY. The effect of various media components, such as carbon sources, simple and complex nitrogen sources, mineral agents, and growth factors (vitamins B, amino acids) was examined. The first-order model based on Plackett-Burman design showed that glucose, sodium pyruvate, meat extract and mineral salts significantly influenced the growth of the examined bacteria. The second-order polynomial regression confirmed that maximum biomass production could be achieved by the combination of glucose (12.38 g/l), sodium pyruvate (3.15 g/l), meat extract (4.08 g/l), potassium phosphate (1.46 g/l), sodium acetate (3.65 g/l) and ammonium citrate (1.46 g/l).

The validation of the predicted model carried out in bioreactor conditions confirmed the usefulness of the new medium for the culture of L. rhamnosus OXY in large scale. The optimal medium makes the culture of the probiotic bacterium L. rhamnosus OXY more cost effective.

Keywords

Lactobacillus biomass growth optimization response surface methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amrane, A., Prigent, Y. (1998) Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: growth and production coupling. World J. Microbiol. Biotechnol. 14, 529–534.CrossRefGoogle Scholar
  2. 2.
    Bajpaj-Dikshit, J., Suresh, A. K., Venkatesh K. V. (2003) An optimal model for representing the kinetics of growth and product formation by Lactobacillus rhamnosus on multiple substrates. J. Biosci. Bioengin. 96, 5, 481–486.CrossRefGoogle Scholar
  3. 3.
    Berry, A. R., Franco C. M. M., Zhang, W., Middelberg A. P. J. (1999) Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol. Lett. 21, 163–167.CrossRefGoogle Scholar
  4. 4.
    Chen, X., Li, Y., Du, G., Chen, J. (2005) Application of response surface methodology in medium optimization for spore production of Coniothyrium minitans in solid-state fermentation. World J. Microbiol. Biotechnol. 21, 593–599.CrossRefGoogle Scholar
  5. 5.
    de Man, J. C., Rogosa, M., Sharpe M. E. (1960) A medium for the cultivation of Lactobacilli. J. Appl. Microbiol. 23, 130–135.Google Scholar
  6. 6.
    Elibol, M. (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem. 39, 1057–1062.CrossRefGoogle Scholar
  7. 7.
    Fung, W. Y., Woo, Y. P., Liong M. T. (2008) Optimization of growth of Lactobacillus acidophilus FTCC 0291 and evaluation of growth characteristics in soy whey medium: a response surface methodology approach. J. Agric. Food Chem. 56, 7910–7918.CrossRefGoogle Scholar
  8. 8.
    Ghanem, N. B., Yusef, H. H., Mahrouse H. K. (2000) Production of Aspergillus terreus xylanase in solid state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Biores. Technol. 73, 113–121.CrossRefGoogle Scholar
  9. 9.
    Guyot, J. P., Calderon, M., Guyot J. M. (2003) Effect of pH control on lactic acid fermentation of starch by Lactobacillus manihotivorans LMG18010T. J. Appl. Microbiol. Biotechnol. 105, 637–647.Google Scholar
  10. 10.
    Hanrahan, G., Lu, K. (2006) Application of factorial designs and Response Surface Methodology in modern experimental design and optimization. Crit. Rev. Anal. Chem. 36, 141–151.CrossRefGoogle Scholar
  11. 11.
    Heriban, V., Sturdik, E., Zalibera, L., Matus, P. (1993) Process and metabolic characteristics of Bacillus coagulons as lactic acid producer. Lett. Appl. Microbiol. 16, 243–246.CrossRefGoogle Scholar
  12. 12.
    Hujanen, M., Linko, Y Y (1996) Effect of temperature and various nitrogen sources on L(+) lactic acid production by Lactobacillus casei. Appl. Microbiol. Biotechnol. 45, 307–313.CrossRefGoogle Scholar
  13. 13.
    Liew, S. L., Ariff, A. B., Raha, A. R., Ho Y. W. (2005) Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology. Int. J. Food Microbiol. 102, 137–142.CrossRefGoogle Scholar
  14. 14.
    Manteagudo, J. M., Rincon, J., Rodriguez, L., Faertes, J., Moya, A. (1995) Determination of the best nutrient medium for production of L lactic acid from beet molasses a statistical approach. Acta Biotechnol. 13, 103–110.CrossRefGoogle Scholar
  15. 15.
    Mataragas, M., Drosinos, E. H., Tsakalidou, E., Metaxopoulos, J. (2004) Influence of nutrients on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Antonie van Leeuwenhoek 85, 191–198.CrossRefGoogle Scholar
  16. 16.
    Myers, R. H., Montgomery D. C. (1995) Response Surface Methodology. Process and Product Optimization Using Designed Experiments. John Wiley&Sons, Inc., NY, USA.Google Scholar
  17. 17.
    Peters, V. J., Snell E. E. (1954) Peptides and bacterial growth. J. Bacteriol. 67, 69–76.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rogosa, M., Franklin, J. G., Perry K. D. (1961) Correlation of vitamin requirements with cultural and biochemical characters of Lactobacillus subsp. Appl. Microbiol. Biotechnol. 24, 473–482.Google Scholar
  19. 19.
    Tamime, A. Y., Marshall V. M. E., Robinson R. K. (1995) Microbiological and technical aspects of milks fermented by Bifidobacteria. J. Dairy Res. 62, 151–187.CrossRefGoogle Scholar
  20. 20.
    Youssef, C. B., Goma, G., Olmos-Dichara, A. (2005) Kinetic modeling of Lactobacillus casei ssp. rhamnosus growth and lactic acid production in batch cultures under various medium conditions. Biotechnol. Lett. 27, 1785–1789.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Waśko
    • 1
  • Monika Kordowska-Wiater
    • 1
  • M. Podleśny
    • 1
  • Magdalena Polak-Berecka
    • 1
    Email author
  • Z. Targoński
    • 1
  • Agnieszka Kubik-Komar
    • 2
  1. 1.Department of Biotechnology, Human Nutrition and Food CommoditiesUniversity of Life SciencesLublinPoland
  2. 2.Department of Applied Mathematics and Computer ScienceUniversity of Life SciencesLublinPoland

Personalised recommendations