Advertisement

Acta Biologica Hungarica

, Volume 61, Issue 2, pp 191–203 | Cite as

Cupric Stress Induces Oxidative Damage Marked by Accumulation Of H2O2 and Changes to Chloroplast Ultrastructure in Primary Leaves of Beans (Phaseolus vulgaris L.)

  • Houda Bouazizi
  • Hager Jouili
  • Anja Geitmann
  • Ezzeddine El FerjaniEmail author
Article
  • 1 Downloads

Abstract

The effect of copper excess (CuSO4) on lipid peroxidation, H2O2 content, and antioxidative enzyme activities was studied in primary leaves of bean seedlings. Fourteen-day-old bean seedlings were cultured in a nutrient solution containing Cu2+ at various concentrations (50 and 75 μM) for 3 days. Excess of copper significantly increased malondialdehyde content and endogenous H2O2. This radical accumulated in the intercellular spaces of palisade mesophyll cells. In addition, cupric stress induced changes in antioxidant enzyme activities. GPX (guaiacol peroxidase, EC 1.11.1.7) activity was decreased in 50 μM Cu-stressed leaves whereas 75 μM of CuSO4 resulted in an increase of enzyme activity. On the contrary, CAT (catalase, EC 1.11.1.6) activity was stimulated at 50 μM CuSO4 but unaltered at 75 μM CuSO4. Transmission electron microscopy revealed that excess copper induced changes in the ultrastructure of chloroplasts visible in form of a deterioration in the grana structure and the accumulation and swelling of starch grains in the stroma.

Keyword

Bean chloroplast copper H2O2 oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aebi, H. (1984) Catalase in vitro. Methods in Enzymology 105, 121–126.PubMedGoogle Scholar
  2. 2.
    Alaoui-sosse, B., Genet, P., Vinit-Dumand, F., Toussaint, M. L., Epron, D., Badot, P. M. (2004) Effect of Cu on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci. 166, 1213–1218.Google Scholar
  3. 3.
    Alvarez, M. E., Penel, R. I., Meijer, P. J., Ishikaw, A., Dixon, R. A., Lamb, C. (1998) Reactive oxygen intermediate a systemic signal network in the establishment of plant immunity. Cell 92, 773–784.Google Scholar
  4. 4.
    Baccouche, S., Chaoui, A., El Ferjani, E. (1998) Nickel induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol. Biochem. 36, 689–694.Google Scholar
  5. 5.
    Barcelo, J., Vazquez, M. D., Poschenrieder, C. H. (1988) Structural and ultrastructural disorder in cadmium-treated bush plants (Phaseolus vulgaris L.). New Physiol. 108, 37–49.Google Scholar
  6. 6.
    Bolwell, G. P., Wojtaszek, P. (1997) Mechanism for generation of reactive oxygen species in plant defence-a broad perspective. Physiol. Mol. Plant Pathol. 51, 347–366.Google Scholar
  7. 7.
    Bouazizi, H., Jouili, H., Geitmann, A., El Ferjani, E. (2008) Effect of copper excess on H2O2 accumulation and peroxidase activities in bean roots. Acta Biol. Hung. 59, 233–245.PubMedGoogle Scholar
  8. 8.
    Bouazizi, H. (2008) Modifications biochimiques et structurales induites par le stress cuprique au niveau des parois cellulaires du haricot vert (Phaseolus vulgaris L.). PhD thesis, University of 7th November at Carthage, Tunisia.Google Scholar
  9. 9.
    Bradford, M. M. (1976) Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annal. Biochem. 72, 248–258.Google Scholar
  10. 10.
    Cakmak, I., Horst, W. J. (1991) Effect of aluminium on net efflux on nitrate and potassium from roots tips of soybean (glycine max L.). Plant Physiol. 13, 400–403.Google Scholar
  11. 11.
    Chen, L. M., Lin, C. C., Kao, C. H. (2000) Cu toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level and cell wall peroxidase activity in roots. Botan. Bull. Acad Sinica 41, 99–103.Google Scholar
  12. 12.
    Devi, S. R., Prasad, M. N. V. (2004) Membrane lipid alterations in heavy metal exposed plants. In: Prasad, M. N. V. Heavy Metal Stress in Plants-From Biomolecules to Ecosystems. Second Edition. Springer, Berlin, pp. 127–144.Google Scholar
  13. 13.
    Demidchik, V., Sokolik, A., Yurin, V. (1997) The effects of Cu2+ on ion transport systems of the plant cell membrane. J. Plant Physiol. 114, 1313–1325.Google Scholar
  14. 14.
    Djebali, W., Zarrouk, M., Brouquisse, R., El Kahoui, S., Limann, F., Chaibi, W., Ghorbel, M. H. (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersion esculentum) chloroplast membranes. Plant Biol. 7, 1801–1810.Google Scholar
  15. 15.
    Ducic, T., Polle, A. (2005) Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 17, 103–112.Google Scholar
  16. 16.
    Eleftheriou, E. P., Karataglis, S. (1989) Ultrastructural and morphological characteristics of cultivated wheat growing on copper-polluted field. Bot. Acta 102, 134–140.Google Scholar
  17. 17.
    Elstner, E. F., Wagner, G. A., Schiitz, W. (1988) Activated oxygen in green plants in relation to stress situations. Curr. Topics Plant Biochem. 36, 873–877.Google Scholar
  18. 18.
    Fielding, J. L., Hall, J. L. (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum. J. Exp. Bot. 29, 979–986.Google Scholar
  19. 19.
    Gora, L., Clijsters, H. (1985) Effects of copper and zinc on the ethylene metabolism in Phaseolus vulgaris L. In: H. Clijsters, M. De Proft, R. Marcelle, M. Van Poucke (eds), Biochemical and physiological aspects of ethylene production in lower and higher plants. Kluwer Academic Publishers Dordrecht, pp. 219–228.Google Scholar
  20. 20.
    Halliwell, B., Gutteridge, J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Halliwell, B., Gutteridge, J. M. C. (1990) Role of free radicals and catalytic metalions in human disease; an overview. Meth. Enzymol. 186, 1–85.Google Scholar
  22. 22.
    Herren, T., Feller, U. (1997) Influence of increased zinc levels on phloem transport in wheat shoots. J. Plant Physiol. 150, 228–231.Google Scholar
  23. 23.
    Karlsson, M., Melzer, M., Prokhorenko, I., Johansson, T., Wingsle, G. (2005) Hydrogen peroxide and expression of hipl-superoxide dismutase are associated with the development of secondary cell walls in Zinnia elegans. J. Exp. Bot. 56, 2085–2093.PubMedGoogle Scholar
  24. 24.
    Lindberg, S., Griffiths, G. (1993) Aluminum effects on ATPase activity and lipid composition of plasma membranes in sugar beet roots. J. Exp. Bot. 44, 1543–1550.Google Scholar
  25. 25.
    Lombardi, L., Sebastaiani, L. (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci. 168, 797–802.Google Scholar
  26. 26.
    Maksymiec, W., Russa, R., Urbanik-Sypniezska, T., Baszynski, T. (1992) Changes in acyl lipid and fatty acid composition in thylakoids of copper non-tolerant spinach exposed to excess copper. J. Plant Physiol. 140, 52–55.Google Scholar
  27. 27.
    Maksymiec, W. (2007) Signaling responses in plants to heavy metal stress. Acta Physiol. Plant 29, 177–187.Google Scholar
  28. 28.
    Mazhoudi, S., Chaoui, A., Ghorbal, M. H., El Ferjani, E. (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersion esculentum, Mill.). Plant Sci. 127, 182–186.Google Scholar
  29. 29.
    Mithöfer, A., Schulze, B., Boland, W. (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Letters 566, 1–5.Google Scholar
  30. 30.
    Molas, J. (1997) Changes in morphological and anatomical structure of cabbage (Brassica oleracea L.) outer leaves and ultrastructure of their chloroplasts caused by in vitro excess of nickel. Photosynthetica 34, 513–522.Google Scholar
  31. 31.
    Orozo-Cardenas, M. L., Narvaez-Vasquez, J., Ryan, C. A. (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in responses to wounding, systemin and methyl jasmonate. Plant Cell 13, 179–191.Google Scholar
  32. 32.
    Quartacci, M. F., Pinzino, C., Sgherri, C. L. M., Vecchia, F. D., Navari-Izzo, F. (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PS II enriched membranes in wheat. Physiol. Plant 108, 87–93.Google Scholar
  33. 33.
    Panou-Filotheou, H., Bosablidis, M., Karataglis, S. (2001) Effects of copper toxicity on leaves of Origanum vulgare subsp. Hirtum Ann. Bot. 88, 207–214.Google Scholar
  34. 34.
    Penel, C., Carpin, S., Crevecoeur, M., Simon, P., Greppin, H. (2000) Binding of peroxidases to Ca2+-pectate: possible significance for peroxidase function in cell wall. Plant Peroxidase Newslett. 14, 33–40.Google Scholar
  35. 35.
    Peng, H. Y., Yang, X., Tian, S. (2005) Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. J. Zhejiang Univ. 6, 311–318.Google Scholar
  36. 36.
    Prasad, M. N. V., Strazalka, K. (1999) Impact of heavy metals on photosynthesis. In: Prasad, M. N. V., Hagemeyer, J. (eds), Heavy metal stress in plants. Springer Publishers, Berlin, pp. 117–138.Google Scholar
  37. 37.
    Ranieri, A., Castagna, A., Pacini, J., Baldan, B., Mensuali, S., Soldatin, G. F. (2003) Early production and scavenging of hydrogen peroxide in the apoplast of sunflower plants exposed to ozone. J. Exp. Bot. 54, 2529–2540.PubMedGoogle Scholar
  38. 38.
    Reichman, S. M. (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Australian Minerals Energy Environm. Found. 14, 1–54.Google Scholar
  39. 39.
    Ros, R., Cooke, D. T., Burden R. S., James, C. S. (1990) Effect of the herbicide MCPA and the heavy metals, cadmium and nickel on the lipid composition Mg-ATPase activity and fluidity of plasma membrane from rice, Oryza sativa c.v. Babia shoots. J. Exp. Bot. 41, 457–462.Google Scholar
  40. 40.
    Ros, R., Morales, A., Segura, J., Picazo, I. (1992) In vivo and in vitro effects to nickel and cadmium on the plasmalemma ATP ase from rice (Oryza sativa L.) shoots and roots. Plant Sci. 83, 1–6.Google Scholar
  41. 41.
    Sandmann, G., Böger, P. (1980) Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol. 66, 797–800.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Sanita, Di Troppi, L., Fossati, F., Mustti, R., Mikerezi, I., Favali, M. A. (2002) Effects of hexavalent chromium on maize, tomato, and cauliflower plants. J. Plant Nutr. 25, 701–717.Google Scholar
  43. 43.
    Schützendübel, A., Polle, A. (2001) Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351–1365.Google Scholar
  44. 44.
    Sergiev, I., Alexieva, V., Karanov, E. (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comt. Rend. Acad. Bulg. Sci. 51, 121–124.Google Scholar
  45. 45.
    Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., Wong, M. H. (2002) Lead, Zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ. Pollut 120, 445–453.PubMedGoogle Scholar
  46. 46.
    Velikova, V., Yordanov, I., Edreva, Q. (2000) Oxidative and some antioxidant systems in acid rain-treated bean plants protection role of exogenous polyamines. Plant Sci. 151, 59–66.Google Scholar
  47. 47.
    Wang, H., Shan, X., Wen, B., Zhang, S., Wang, Z. (2004) Responses of antioxidative enzymes to accumulation of copper in copper hyperaccumulator of Commoelina communis. Arch. Environ Contam. Toxicol. 47, 185–192.PubMedGoogle Scholar
  48. 48.
    Wecks, J. E. J., Clijsters, H. M. M. (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 35, 405–410.Google Scholar
  49. 49.
    Yruela, I. (2005) Copper in plants. Braz. J. Plant Physiol. 17, 145–156.Google Scholar
  50. 50.
    Yurekli, F., Porgali, B. Z. (2006) The effects of excessive exposure to copper in bean plants. Acta Biol. Cracoviensia Series Botanica 48, 7–13.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Houda Bouazizi
    • 1
  • Hager Jouili
    • 1
  • Anja Geitmann
    • 2
  • Ezzeddine El Ferjani
    • 1
    Email author
  1. 1.Laboratory of Bio-Cell PhysiologyFaculty of Sciences BizerteZarzounaTunisia
  2. 2.Department of Biological Sciences, Institute Research in Plant BiologyUniversity of MontrealMontrealCanada

Personalised recommendations