Advertisement

Acta Biologica Hungarica

, Volume 61, Issue 1, pp 90–100 | Cite as

Differences in Morpho-Anatomical Structure of Ozone-Sensitive and Ozone-Resistant Tobacco Cultivars

  • Klaudia BorowiakEmail author
  • Janina Zbierska
  • Maria Drapikowska
Article

Abstract

Tropospheric ozone causes visible injuries in selected plants. Some plant species have been recognized as resistant and sensitive to ozone. Differences in the response to ozone of two kinds of plants are interesting because of practical implications. Resistant cultivars (without visible symptoms) will be more valuable for agriculture, forestry and horticulture. It is, however, necessary to find out the reason of the occurrence of the visible symptoms. The presented studies focused on selected morphological and anatomical differences between well-known ozone-sensitive (Bel W3) and -resistant (Bel B) cultivars of tobacco plants. Daily growth of the sensitive cultivar was higher than that of the resistant one. This tendency was also valid for the leaf growth which might have been the response of the sensitive cultivar to decreased photosynthetic leaf area (necrosis) caused by ozone. Morphological investigations revealed thinner upper epidermal cells in the sensitive cultivar. Moreover, a decrease of spongy mesophyll cell layers was observed. The obtained results suggest that it is the anatomical structure that may be partly responsible for ozone resistance - wider epidermal cells, more spongy mesophyll cell layers.

Keywords

Tropospheric ozone tobacco morphology anatomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashmore, M. R., Ainsworth, N. (1995) The effects of ozone and cutting on the species composition of artificial grassland communities. Fund. Ecol. 9, 708–712.CrossRefGoogle Scholar
  2. 2.
    Bell, J. N. B., Treshow, M. (2004) Air Pollution and Plant Life. John Wiley and Sons Publisher, Chichester.Google Scholar
  3. 3.
    Borowiak, K. (2005) Visible leaf injury of tobacco plants caused by tropospheric ozone in the Poznan City and surroundings areas in 2002–2004. Prace Kom. Nauk Roln. i Nauk Leśn. PTPN, Poznań, 98/99, 57–66 [In Polish].Google Scholar
  4. 4.
    Borowiak, K., Drzewiecka, K., Golihski, P., Zbierska, J. (2007) Physiological reaction of tobacco plants to ambient air pollution with tropospheric ozone — preliminary studies. Electronic Journal of Polish Agricultural Universities, Environmental Development, 10.Google Scholar
  5. 5.
    Borowiak, K., Rucińska-Sobkowiak, R., Rymer, K., Gwóźdź, E., Zbierska, J. (2009) Biochemical markers of tropospheric ozone: experimentation with test-plants. Pol. J. Ecol. 57. [in press].Google Scholar
  6. 6.
    Cape, J. N., Smith, R. J., Fowler, D. (1994) The influence of ozone chemistry ad meteorology on plant exposure to photo-oxidant. Proceedings of the Royal Society of Edinburgh 102, 11–31.Google Scholar
  7. 7.
    Castell, J.-F., Maton, C., Vivant, A. C. (2004) An empirical model of Bel W3 leaf stomatal conductance for ozone biomonitoring studies. In: Klumpp, A., Ansel, W., Klumpp, G. (eds) Urban Air Pollution, Bioindication and Environmental Awareness. Cuvillier Verlag, Göttingen, pp. 263–271.Google Scholar
  8. 8.
    Chappelka, A. H., Chevone, B. I. (1992) Tree response to ozone. In: Lehfon, A. S. (ed.) Surface Level Ozone Exposures and Their Effects on Vegetation. Lewis Publisher, Chelsea, pp. 271–309.Google Scholar
  9. 9.
    Evans, L. S., Albury, K., Jenings, N. (1996) Relationships between anatomical characteristics and ozone sensitivity of leaves of several herbaceous dicotyledonous plant species at Great Smoky Mountains National Park. Env. Exp. Bot. 36, 413–420.CrossRefGoogle Scholar
  10. 10.
    Evans, L. S., Ting, I. P. (1974) Ozone sensitivity of leaves: relationship to leaf water content, gas transfer resistance, and anatomical characteristics. Am. J. Bot. 61, 592–597.CrossRefGoogle Scholar
  11. 11.
    Feridnand, J. A., Fredericksen, T. S., Kouterick, K. B., Skelly, J. M. (2000) Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (Prunus sertina) seedlings. Environ. Pollut. 108, 297–302.CrossRefGoogle Scholar
  12. 12.
    Filutowicz, A. Kuzdowicz, A. (1951) Plants Microtechniques. Pahstwowe Wydawnictwo Rolnicze i Lesne, Warszawa. [In Polish]Google Scholar
  13. 13.
    Fowler, D., Cape, J. N., Coyle, M., Smith, R. I., Hellbrekke, A.-G., Simpson, D., Derwent, R. D., Johnson, C. (1999) Modeling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems. Environ. Pollut. 100, 43–55.CrossRefGoogle Scholar
  14. 14.
    Gerosa, G., Marzuoli, R., Bussotti, F., Pancrazi, M., Ballarin-Denti, A. (2003) Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake. Environ. Pollut. 125, 91–98.CrossRefGoogle Scholar
  15. 15.
    Gravano, E., Giulietti, V., Desotgiu, R., Bussotti, F., Grossoni, P., Gerosa, G., Tani, C. (2003) Foliar response of an Ailanthus Altissima clone on two sites with different levels of ozone-pollution. Environ. Pollut. 121, 137–146.CrossRefGoogle Scholar
  16. 16.
    Guderian, R. (1985) Air Pollution by Photochemical Oxidants, Formation, Transport, Control and Effects on Plants. Springer Verlag, Berlin.CrossRefGoogle Scholar
  17. 17.
    Heath, R. L. (1996) The modification of photosynthetic capacity induced by ozone exposure. In: Baker, N. R. (ed.) Photosynthesis and the Environment. Kluwer Academic Publishers, Dordrecht, pp. 356–363.Google Scholar
  18. 18.
    Klumpp, A., Ansel, W., Klumpp, G., Pickl, C. (1999) European Network for the Assessment of Air Quality by the use of Bio-indicator Plants. Criteria for the selection of the bio-indicator stations. Instructions for cultivation, exposure, injury assessment and sampling of the bio-indicator species. Universität Hohenheim.Google Scholar
  19. 19.
    Kohut, R. J., Amundsen, R. G., Laurence, J. A., Colavito, L., Van Leuken, P., King, P. (1987) Effects of ozone and sulfur dioxide on yield on winter wheat. Phytopathology 77, 71–74.CrossRefGoogle Scholar
  20. 20.
    Krupa, S. V., Tonneijck, A. E. G., Manning, W. J. (1998) Ozone. In: Flagler, R. B. (ed.) Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas. Air & Waste Management Association, Pittsburgh, pp. 2.1–2.13.Google Scholar
  21. 21.
    Ljubesic, N., Britvec, M. (2006) Tropospheric ozone-induced structural changes in leaf mesophyll cell walls in grapevine plants. Biologia, Bratislava 61, 85–90.CrossRefGoogle Scholar
  22. 22.
    Masuch, G., Kettrup, A. (1985) Investigations on the effect of ozone on leaves of pinto bean (Phaseolus vulgaris L.) and beech yearlings (Fagus sylvatica L.). In: Troyanovsky, C. (ed.) Air Pollution and Plants. Wiley-VCH, Weinheim, Germany, pp. 142–145.Google Scholar
  23. 23.
    Moss, D. M., Berrett, N. R., Bogle, A. L., Bilkova, J. (1998) Anatomical evidence of the development of damage symptoms across a growing season in needles of red spruce from central New Hempshire. Environ. Exper. Bot. 39, 247–262.CrossRefGoogle Scholar
  24. 24.
    Oksanen E., Sober J., Karnosky, D. F. (2001) Impacts of elevated CO2 and/or O3 leaf ultrastructure of aspen (Polpulus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environ. Pollut. 115, 437–446.CrossRefGoogle Scholar
  25. 25.
    Pääkkönen, E., Halopainen, T., Kärenlampi, L. (1995) Effects of ozone on birch (Betula pendula Roth.) clones. Water, Air Soil Pollut. 85, 1331–1336.CrossRefGoogle Scholar
  26. 26.
    Pääkkönen, E., Halopainen, T., Kärenlampi, L. (1997) Variation in ozone sensitivity of Betula pendula and Betula pubescens clones from southern and central Finland. Environ. Pollut. 95, 37–44.CrossRefGoogle Scholar
  27. 27.
    Reig-Armiñana, J., Calatayud, V., Carveró, J., Garcia-Breijo, F. J., Ibars, A., Sanz, M. J. (2004) Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.). Environ. Pollut. 132, 321–331.CrossRefGoogle Scholar
  28. 28.
    Stanners, D., Bourdeau, P. (1995) Europe’s Environment. The Dobris assessment. Copenhagen European Environment Agency. pp. 5547–5551.Google Scholar
  29. 29.
    Tingey, D. T., Olszyk, D. M., Herstrom, A. E., Lee, E. H. (1994) Effects of ozone on crops. In: McKee, D. J. (ed.) Tropospheric Ozone. Lewis Publishers, Boca Raton, pp. 175–206.Google Scholar
  30. 30.
    Vaz Pedroso, A. N., Alves, E. S. (2008) Anatomia foliar comparative das cultivares de Nicotiana tabacum L. (Solanaceae) sensivel e tolerante ao ozônio. Acta Bot. Bras. 22, 21–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Klaudia Borowiak
    • 1
    Email author
  • Janina Zbierska
    • 1
  • Maria Drapikowska
    • 1
  1. 1.Department of Ecology and Environmental ProtectionPoznan University of Life SciencesPoznanPoland

Personalised recommendations