Advertisement

Acta Biologica Hungarica

, Volume 60, Issue 3, pp 321–328 | Cite as

Optimization of Coprogen Production in Neurospora crassa

  • Viktória Tóth
  • K. Antal
  • Gyöngyi Gyémánt
  • M. Miskei
  • I. Pócsi
  • T. EmriEmail author
Article

Abstract

Coprogen production of Neurospora crassa was dependent on glucose, aspartate and iron contents as well as on initial pH of the culture media. Surplus iron and acidic pH hindered the production of coprogen as well as the transcription of the sid1 gene (NCU07117) encoding putative L-ornithine-N5-monooxygenase, the first enzyme in the coprogen biosynthetic pathway. High glucose (40 g/l) and aspartate (21 g/l) concentrations were beneficial for coprogen synthesis, but neither glucose nor aspartate affected the sid1 transcription. Moreover, efficient coprogen production was observed after glucose had been consumed, which suggested that N. crassa accumulated iron even in non-growing, carbon-starving cultures.

Keywords

Siderophore coprogen Neurospora crassa response surface methodology L-ornithine-N5-monooxygenase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project was supported financially by the Hungarian National Office for Research and Technology (grant reference number OMFB 01501/2006), the GENOMNANOTECH-DEBRET (RET-06/2004) and by the SOLE-MEAT Ltd., Szolnok, Hungary.

References

  1. 1.
    Balla, J., Vercelotti, G. M., Jeney, V., Yachie, A., Varga, Z., Eaton, J. W., Balla, G. (2005) Heme, heme oxygenase and ferritin. Mol. Nutr. Food Res. 49, 1030–1043.CrossRefGoogle Scholar
  2. 2.
    Charlang, G., Ng, B., Horowitz, N. H., Horowitz, R. M. (1981) Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol. Cell Biol. 1, 94–100.CrossRefGoogle Scholar
  3. 3.
    Enyedy, É. A., Pócsi, I., Farkas, E. (2004) Complexation of desferricoprogen with trivalent Fe, A., Ga, In and divalent Fe, N., Cu, Zn metal ions: effects of the linking chain structure on the metal binding ability of hydroxamate based siderophores. J. Inorg. Biochem. 98, 1957–1966.CrossRefGoogle Scholar
  4. 4.
    Haas, H. (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl. Microbiol. Biotechnol. 62, 316–330.CrossRefGoogle Scholar
  5. 5.
    Hof, C., Eisfeld, K., Welzel, K., Antelo, L., Foster, A. J., Anke, H. (2007) Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity in rice. Mol. Plant. Pathol. 8, 163–172.CrossRefGoogle Scholar
  6. 6.
    Hördt, W., Römheld, V., Winkelmann, G. (2000) Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. BioMetals 13, 37–47.CrossRefGoogle Scholar
  7. 7.
    Horowitz, N. H., Charlang, G., Horn, G., Williams, N. P. (1976) Isolation and identification of the conidial germination factor of Neurospora crassa. J. Bacteriol. 127, 135–140.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Howard, D. H. (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin. Microbiol. Rev. 12, 394–404.CrossRefGoogle Scholar
  9. 9.
    Huschka, H., Naegeli, H. U., Leuenberger-Ryf, H., Keller-Schierlein, W., Winkelmann, G. (1985) Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa. J. Bacteriol. 162, 715–721.PubMedPubMedCentralGoogle Scholar
  10. 10.
    John, S. G., Ruggiero, C. E., Hersman, L. E., Tung, C. S., Neu, M. P. (2001) Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environ. Sci. Technol. 35, 2942–2948.CrossRefGoogle Scholar
  11. 11.
    Konetschny-Rapp, S., Huschka, H. G., Winkelmann, G., Jung, G. (1988) High-performance liquid chromatography of siderophores from fungi. Biol. Met. 1, 9–17.CrossRefGoogle Scholar
  12. 12.
    Leary, N. O., Pembroke, A., Duggan, P. F. (1992) Improving accuracy of glucose oxidase procedure for glucose determinations on discrete analyzers. Clin. Chem. 38, 298–302.PubMedGoogle Scholar
  13. 13.
    Lee, S. L., Chen, W. C. (1997) Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme Microbiol. Technol. 21, 436–440.CrossRefGoogle Scholar
  14. 14.
    Matzanke, B. F., Bill, E., Trautwein, A. X., Winkelmann, G. (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. Biol. Metals 1, 18–25.CrossRefGoogle Scholar
  15. 15.
    Pócsi, I., Jeney, V., Kertai, P., Pócsi, I., Emri, T., Gyémánt, Gy., Fésüs, L., Balla, J., Balla, Gy. (2008) Fungal siderophores function as protective agents of LDL oxidation and are promising anti-atherosclerotic metabolites in functional food. Mol. Nutr. Food Res. 52, 1434–1447.CrossRefGoogle Scholar
  16. 16.
    Richardson, D. R. (2002) Iron chelators as therapeutic agents for the treatment of cancer. Crit. Rev. Oncol/Hematol. 42, 267–281.CrossRefGoogle Scholar
  17. 17.
    Skromne, I., Sanchez, O., Aguierre, J. (1995) Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology 141, 21–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Viktória Tóth
    • 1
  • K. Antal
    • 2
  • Gyöngyi Gyémánt
    • 3
  • M. Miskei
    • 4
  • I. Pócsi
    • 1
  • T. Emri
    • 1
    Email author
  1. 1.Department of Microbial Biotechnology and Cell Biology, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of Zoology, Faculty of SciencesEszterházy Károly CollegeEgerHungary
  3. 3.Department of Biochemistry, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
  4. 4.Department of Horticultural Sciences and Plant Biotechnology, Faculty of AgricultureUniversity of DebrecenDebrecenHungary

Personalised recommendations