Effect of Foliar Feeding on Nitrogen Assimilation in Alfalfa Plants at Insufficient Molybdenum Supply

Abstract

The influence of foliar feeding on the nitrogen assimilation in alfalfa plants under conditions of Mo shortage was studied. It was established that foliar fertilization with 0.3% solution of Agroleaf ® resulted in increase of nitrogen fixation and nitrogen assimilation in the absence of Mo. Insufficient molybdenum supply leads to significant reduction of plant Mo content and nitrogen-fixing activity, while stress induced amino acids as alanine, GABA, threonine, proline and serine increased repeatedly. The negative effect of Mo deficiency on the enzyme activities related to the primary nitrogen assimilation (NR, GS, GOGAT) and plant growth diminished due to the foliar absorbed nutrients.

References

  1. 1.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 72, 248–254.

    CAS  Article  Google Scholar 

  2. 2.

    Brodrick, S., Giller, K. (1991) Root nodules of phaseolus: Efficient scavengers of molybdenum for N2-fixation. J. Exp. Bot. 42, 679–686.

    CAS  Article  Google Scholar 

  3. 3.

    Chen, F. L., Cullimore, J. V. (1988) Two isozymes of NADH-dependent glutamate synthase in root nodules of Phaseolus vulgaris L.: purification, properties and activity changes during nodule development. Plant Physiol. 88, 1411–1417.

    CAS  Article  Google Scholar 

  4. 4.

    Dahlquist, R. L., Knoll, J. W. (1978) Inductively coupled plasma atomic emission spectrometer: Analysis of biological materials and ASB as a liming material would not result in further major, trace and ultra-trace elements. Appl. Spectrosc. 32, 1–29.

    CAS  Article  Google Scholar 

  5. 5.

    Frechilla, S., Lasa, B., Aleu, M., Juanarena, N., Lamsfus, C., Aparicio-Tejo, P. M. (2002) Short-term ammonium supply stimulates glutamate dehydrogenase activity and alternative pathway respiration in roots of pea plants. J. Plant Physiol. 159, 811–818.

    CAS  Article  Google Scholar 

  6. 6.

    Gupta, U., Lipsett, J. (1981) Molybdenum in soil, plants, and animals. Adv. Agron. 34, 73–115.

    CAS  Article  Google Scholar 

  7. 7.

    Hageman, R. H., Reed, A. J. (1980) Nitrate reductase from higher plants. Method Enzymol. 69, 270–280.

    CAS  Article  Google Scholar 

  8. 8.

    Hardy, R. F., Burns, R. C., Holsten, R. D. (1973) Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5, 47–81.

    CAS  Article  Google Scholar 

  9. 9.

    Hoagland, D. R., Arnon, D. I. (1950) The water-culture method for growing plants without soil. Calif. Agr. Exp. Sta. Circ. 347, 1–39.

    Google Scholar 

  10. 10.

    Hristozkova, M, Geneva, M., Stancheva, I., Georgiev, G. (2007) Response of inoculated foliar fed pea plants (Pisum sativum L.) to reduced Mo supply. Acta Biol. Hung. 58, 87–92.

    Article  Google Scholar 

  11. 11.

    Hristozkova, M., Geneva, M., Stancheva, I., Georgiev, G. (2007b) Nitrogen assimilatory enzymes and amino acid content in inoculated foliar fertilized pea plants grown at reduced molybdenum concentration. J. Plant Nutr. 309, 1409–1419.

    Article  Google Scholar 

  12. 12.

    Journet, E.-P., Barker, D., Harrison, H., Kondorosi, E. (2001) M. truncatula as biological material (Module 1). In: EMBO Practical Course on the New Plant Model System Medicago truncatula. Gif-sur-Yvette, pp. 1–29.

    Google Scholar 

  13. 13.

    Kaiser, B., Gridley, K., Brady, J., Phillips, T., Tyerman, S. (2005) The role of molybdenum in agricultural plant production. Ann. Bot. 96, 745–754.

    CAS  Article  Google Scholar 

  14. 14.

    Lea, P., Sodek, L., Parry, M., Shewry, P., Halford, N. (2007) Asparagine in plants. Ann. App. Biol. 150, 1–26.

    CAS  Article  Google Scholar 

  15. 15.

    Lozanov, V., Petrov, S., Mitev, V. (2004) Simultaneous analysis of amino acid and biogenic polyamines by high-performance liquid chromatography after pre-column derivatization with N-(9-fluorenylmethoxycarbonyloxy) succinimide. J. Chrom. 1025, 201–208.

    CAS  Article  Google Scholar 

  16. 16.

    Marschner, H. (1995) Mineral Nutrition of Higher Plants. Acad. Press, London, pp. 887.

    Google Scholar 

  17. 17.

    Mendel, R., Hänsch, R. (2002) Molybdo enzymes and molybdenum cofactor in plants. J. Exp. Bot. 375, 1689–1698.

    Article  Google Scholar 

  18. 18.

    Notton, B. (1983) Micronutrients and nitrate reductase. In: Robb, D. A., Pierpoint, W. S. (eds) Metals and Micronutrients: Uptake and Utilization by Plants. Academic Press Inc., Bath, pp. 219–240.

    Google Scholar 

  19. 19.

    O’Neal, D., Joy, K. W. (1973) Glutamine synthetase of pea leaves, I. Purification, stabilization and pH optima. Arch. Bioch. Biophys. 159, 113–122.

    Article  Google Scholar 

  20. 20.

    Oaks, A. (1994) Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot. 72, 739–750.

    CAS  Article  Google Scholar 

  21. 21.

    Puppo, A., Groten, K., Bastian, F., Carzaniga, R., Soussi, M., Lucas, M., Rosario de Felipe, M., Harrison, J., Vanacker, H., Foyer, C. (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol. 165, 683–701.

    CAS  Article  Google Scholar 

  22. 22.

    Ratcliffe, R. (1995) Metabolic aspects of the anoxic response in plant tissue. In: N. Smirnoff (ed.) Environment and Plant Metabolism: Flexibility and Acclimation. Bios Scientific, Oxford, pp. 111–127.

    Google Scholar 

  23. 23.

    Rosendahl, L., Jakobsen, I. (1987) Rhizobium strain effects on pea: the relation between nitrogen accumulation, phosphoenolpyrovate carboxylase activity in nodules and asparagine in root bleeding sap. Physiol. Plant. 71, 281–286.

    CAS  Article  Google Scholar 

  24. 24.

    Stewart, G., Larher, F. (1980) Accumulation of amino acids and related compounds in relation to environmental stress. In: Miflin, B. J. (ed.) The Biochemistry of Plants. Academic Press, New York, Vol. 5, pp. 609–635.

    CAS  Google Scholar 

  25. 25.

    Streeter, J. G. (1981) Effect of nitrate in the rooting medium on carohydrate composition of soybean nodules. Plant Physiol. 69, 1429–1434.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ira Stancheva.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Hristozkov, M., Geneva, M. & Stancheva, I. Effect of Foliar Feeding on Nitrogen Assimilation in Alfalfa Plants at Insufficient Molybdenum Supply. BIOLOGIA FUTURA 60, 211–219 (2009). https://doi.org/10.1556/ABiol.60.2009.2.8

Download citation

Keywords

  • Alfalfa
  • Mo deficiency
  • foliar feeding
  • nitrogen assimilation
  • nitrogen fixation