Advertisement

Acta Biologica Hungarica

, Volume 60, Issue 2, pp 185–194 | Cite as

Effect of Moderate Hypoxia/Reoxygenation on Mitochondrial Adaptation to Acute Severe Hypoxia

  • Olga GoncharEmail author
  • Irina Mankovskaya
Article

Abstract

In an experimental model, it was shown that repetitive periods of hypoxia/reoxygenation (H/R) [5 cycles of 5 min hypoxia (12% O2 in N2) followed by 15 min normoxia, daily for three weeks] attenuated basal and stimulated in vitro lipid peroxidation, as well as H2O2 production in liver and brain mitochondria of rats exposed to acute severe hypoxia. Adaptation to moderate H/R enhanced in mitochondria the production and activity of reactive oxygen species scavengers, such as glutathione, manganese superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase. It was demonstrated that the maintenance of GSH-redox cycle by activation of glutathione reductase and NADP+-dependent isocitrate dehydrogenase is an integral part of the biochemical adaptive mechanism of oxidative tolerance to new damaging factor. Brain mitochondria showed more sensitivity to oxidative stress than liver mitochondria, and long-lasting sessions of H/R affect differentially their pro-/antioxidant homeostasis.

Keywords

Hypoxia/reoxygenation mitochondria oxidative stress antioxidative defense adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, M. (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–551.CrossRefGoogle Scholar
  2. 2.
    Arkhipenko, Yu., Sazontova, T. G. (1995) Mechanisms of the cardioprotective effect of a diet enriched n-3 polyunsaturated fatty acids. Pathophysiology 2, 131–140.CrossRefGoogle Scholar
  3. 3.
    Arrigo, A. P. (1999) Gene expression and the thiol redox state. Free Radic. Biol. Med. 27, 936–944.CrossRefGoogle Scholar
  4. 4.
    Barja, G., Lopez Torres, M., Perez Campo, R., Rojas, C., Cadenas, S., Prat, J., Pamplona, R. (1994) Dietary vitamin C decreases endogenous protein oxidative damage, malondialdehyde, and lipid peroxidation and maintains fatty acid unsaturation in the guinea pig liver. Free Radic. Biol. Med. 17, 105–115.CrossRefGoogle Scholar
  5. 5.
    Basford, R. E. (1967) Preparation and properties of brain mitochondria. Methods Enzymol. 10, 96–100.CrossRefGoogle Scholar
  6. 6.
    Bell, E., Emerling, B., Chandel, N. (2005) Mitochondrial regulation of oxygen sensing. Mitochondrion 5, 322–332.CrossRefGoogle Scholar
  7. 7.
    Buege, J., Aust, S. (1978) Microsomal lipid peroxidation. Methods Enzymol. LII, 302–308.CrossRefGoogle Scholar
  8. 8.
    Carlberg, I., Mannervik, B. (1985) Glutathione Reductase. Methods Enzymol. 113, 484–490.CrossRefGoogle Scholar
  9. 9.
    Chandel, N., Budinger, S. (2007) The cellular basis for diverse responses to oxygen. Free Radic. Biol. Med. 42, 165–174.CrossRefGoogle Scholar
  10. 10.
    Clanton, T. L., Klawitter, P. (2001) Physiological and genomic consequences of intermittent hypoxia. Invited review: Adaptive responses of skeletal muscle to intermittent hypoxia: the known and the unknown. J. Appl. Physiol. 90, 2476–2487.CrossRefGoogle Scholar
  11. 11.
    Dickinson, D. A., Forman, H. J. (2002) Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 4, 1019–1026.CrossRefGoogle Scholar
  12. 12.
    Faraci, F., Didion, S. (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler. Thromb. Vasc. Biol. 24, 1367–1373.CrossRefGoogle Scholar
  13. 13.
    Gonchar, O. (2005) Muscle fiber specific antioxidative system adaptation to swim training in rats: influence of intermittent hypoxia. J. Sport Sci. Med. 4, 160–169.Google Scholar
  14. 14.
    Gonchar, O., Rozova, K. (2007) Effects of different modes of interval hypoxic training on morphological characteristics and antioxidant status of heart and lung tissues. Bull. Exp. Biol. Med. 144, 249–252.CrossRefGoogle Scholar
  15. 15.
    Halliwell, B., Gutteridge, J. M. C. (1999) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.Google Scholar
  16. 16.
    Huwiler, M., Kohler, H. (1984) Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase/ H2O2/iodide system. Eur. J. Biochem. 141, 69–74.CrossRefGoogle Scholar
  17. 17.
    Jezek, P., Hlavata, L. (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. & Cell Biol. 37, 2478–2503.CrossRefGoogle Scholar
  18. 18.
    Jo, S., Son, M., Koh, H., Lee, S., Song, I., Kim, Y., Lee, Y., Jeong, K., Kim, W., Park, J., Song, B., Huhe, T. (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol. Chem. 276, 16168–16176.CrossRefGoogle Scholar
  19. 19.
    Jonson, D., Lardy, H. (1967) Isolation of liver and kidney mitochondria. Methods Enzymol. 10, 94–96.CrossRefGoogle Scholar
  20. 20.
    Li, C., Jackson, R. M. (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. 282 (Cell Physiol.), C227–C241.CrossRefGoogle Scholar
  21. 21.
    Lin, A., Chen, C. F., Ho, L. T. (2002) Neuroprotective effect of intermittent hypoxia on iron-induced injury in rat brain. Exp. Neurology 178, 328–335.CrossRefGoogle Scholar
  22. 22.
    Lukyanova, L. D. (2005) Novel approach to the understanding of molecular mechanisms of adaptation to hypoxia. In: Hargens, A., Takeda, N., Singal, P. (eds) Adaptation Biology and Medicine. Current Concepts, New Delhi: Narosa, pp. 1–19.Google Scholar
  23. 23.
    Maiti Panchanan, Shashi B. Singh, Alpesh K. Sharma, Muthuraju, S., Pratul, K., Banerjee, Ilavazhagan, G. (2006) Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem. Int. 49, 709–716.CrossRefGoogle Scholar
  24. 24.
    Misra, H., Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay superoxide dismutase. J. Biol. Chem. 247, 3170–3175.Google Scholar
  25. 25.
    Putilina, F. (1982) The NADP+-dependent isocitrate dehydrogenase activity determination. Methods Biochem. 1, 174–176.Google Scholar
  26. 26.
    Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B. (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588–590.CrossRefGoogle Scholar
  27. 27.
    Warholm, M., Guthenberg, C., Bahr, C., Mannervik, B. (1985) Glutathione transferases from human liver. Methods Enzymol. 113, 499–501.CrossRefGoogle Scholar
  28. 28.
    Waypa, G. B., Schumacker, P. T. (2005) Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. J. Appl. Physiol. 98, 404–414.CrossRefGoogle Scholar
  29. 29.
    Zhu, W.-Z., Xie, Y., Chen, L., Yang, H.-T., Zhou, Z.-N. (2006) Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J. Mol. Cell Cardiol. 40, 96–106.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Hypoxic StatesBogomoletz Institute of Physiology National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations