Advertisement

Acta Biologica Hungarica

, Volume 60, Issue 1, pp 79–88 | Cite as

Changes in Antioxidant Status and Biochemical Parameters after Orally Cadmium Administration in Females Rats

  • S. ChaterEmail author
  • T. Douki
  • A. Favier
  • M. Sakly
  • H. Abdelmelek
Open Access
Article

Abstract

The research was conducted to investigate the toxic effects of cadmium chloride (CdCl2), administered during gestation period on female Wistar rats. Pregnant rats received CdCl2 (20 mg/1, orally) from Day 6 to Day 19 of pregnancy. Results showed that Cd treatment induced a decrease in body weight gain. The relative liver weight increased significantly, with a marked decrease of glycogen and total lipids content. The administration of Cd induced hepatotoxicity as indicated by elevations in plasma alanine aminotransferase (ALT), aspartate aminotransferase and lactate dehydrogenase (LDH) activities (p < 0.05). Treatment with CdCl2 caused a significant (p < 0.05) increase in glucose. A significant increase was observed in the level of MDA and 8-oxodGuo tissues in the cadmium-exposed group compared to the control group (p < 0.05). Results showed that cadmium given to dams led to an oxidative stress and DNA damage in tissues of pregnant rats.

Keywords

Cadmium malondialdehyde 8-oxodGuo pregnancy 

Notes

Acknowledgements

This work was supported the Tunisian Ministry of Higher Education. The authors gratefully acknowledge the technical assistance of Mr Bechir Azib.

References

  1. 1.
    Amara, S., Abdelmelek, H., Garrel, C., Guiraud, P., Douki, T., Ravanat, J. L., Favier, A., Sakly, M., Ben Rhouma, K. (2006) Influence of static magnetic field on cadmium toxicity: Study of oxidative stress and DNA damage in rat tissues. J. Trace Elements Med. Biol. 20, 263–269.CrossRefGoogle Scholar
  2. 2.
    Baranski, B. (1986) Effect of maternal cadmium exposure on postnatal development and tissue cadmium, copper and zinc concentrations in rats. Arch. Toxicol. 58, 255–260.CrossRefGoogle Scholar
  3. 3.
    Bligh, E. G., Dyer, W. J. (1959) A. rapid method of total lipid extraction and purification. J. Biochem. Physiol. 37, 911–917.Google Scholar
  4. 4.
    Casalino, E., Calzaretti, G., Sblano, C., Landriscin, C. (2002) Molecular inhibitory mechanism of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 179, 37–50.CrossRefGoogle Scholar
  5. 5.
    Ding, Y., Gonick, H. C., Vaziri, N. D., Liang, K., Wei, L. (2001) Lead induced hypertension, III: increased hydroxyl radical production. Am. J. Hypertension. 14, 169–173.CrossRefGoogle Scholar
  6. 6.
    El-Demerdash, F. M., Yousef, M. I., Kedwany, F. S., Baghdadi, H. H. (2004) Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E. and p-carotene. Food Chem. Toxicol. 42, 1563–1571.CrossRefGoogle Scholar
  7. 7.
    Elinder, C. G. (1991) Biological monitoring of cadmium. In: Biological Monitoring of Exposure to Chemical Metals. John Wiley and Sons, New York, pp. 197–207.Google Scholar
  8. 8.
    Folch, J., Lees, M., Sloane, K., Stanely, G. H. (1957) A. simple method for isolation and purification of total lipids from animal tissues. J. Biochem. Physiol. 226, 497–509.Google Scholar
  9. 9.
    Fotakis, G., Cemeli, E., Anderson, D., Timbrell, J. A. (2005) Cadmium chloride-induced DNA and lysosomal damage in a. hepatoma cell line. Toxicol, in Vitro 19, 481–489.CrossRefGoogle Scholar
  10. 10.
    Good, C. A., Krames, H., Somogy, M. (1933) Chemical procedures for analysis of polysaccharides. Method Enzymol. 8, 34.Google Scholar
  11. 11.
    Hazelhoff Roelfzema, W., Roelofsen, A. M., Copius, Peereboom-Stegeman, J. H., VanNoorden, C. J. (1988) Glycogen content of placenta and of fetal and maternal liver of cadmium-exposed rats. II: A. quantitative histochemical study. Placenta 9, 39–45.CrossRefGoogle Scholar
  12. 12.
    Hussain, T., Shukla, G. S., Chandra, S. V. (1987) Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharmacol. Toxicol. 60, 355–358.CrossRefGoogle Scholar
  13. 13.
    Jarup, L., Berlund, M., Elinder, C., Nodberge, G., Vahter, M. (1998) Health effect of cadmium exposure. A. review of the literature and a. risk estimate. Scand. J. Work Environ. Health 1, 1–51.Google Scholar
  14. 14.
    Kantola, M., Purkunen, R., Kroger, P., looming, A., Juravskaja, J., Pasanen, M., Saarikoski, S., Vartiainen, T. (2000) Accumulation of cadmium, zinc, and copper in maternal blood and developmental placental tissue: differences between Finland, Estonia, and St. Petersburg. Environ. Research 83, 54–66.CrossRefGoogle Scholar
  15. 15.
    Keilan, Z., Ziolkowska, B., Falkus, B., Jethon, Z. (1989) Effect of cadmium intoxication on glucose utilization in energy metabolism of muscles. Acta. Physiol. Pol. 40, 535–543.Google Scholar
  16. 16.
    Klapcinska, B., Poprzecki, S., Dolezych, B., Kimsa, E. (2000) Cadmium-induced changes in hematology and 2,3-DPG levels in rats. Bull. Environ. Contam. Toxicol. 64, 93–99.CrossRefGoogle Scholar
  17. 17.
    Klein, R. A. (1970) The detection of oxidation in liposome prematios. Biochem. Acta 210, 486–489.CrossRefGoogle Scholar
  18. 18.
    Konigs, A. W. T. (1984) Lipid Peroxidation in Liposomesin: Liposomes Technology, 1, Crs Press, Boca Raton.Google Scholar
  19. 19.
    Manca, D., Ricard, A. C., Trotter, B., Chevalier, G. (1991) Studies of lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology 67, 303–323.CrossRefGoogle Scholar
  20. 20.
    Mendez-Armenta, M., Villeda-Hernandez, J., Barroso-Moguel, R., Nava-Rmz, C., Jimenez-Capde-ville, M. E., Rios, C. (2003) Brain regional lipid peroxidation and metallothionein levels of developing rats exponed to cadmium and dexamethasone. Toxicol. Lett. 144, 151–157.CrossRefGoogle Scholar
  21. 21.
    Milnerowicz, H., Zasawski, R. (1995) Effect of smoking on metals and metallothionein content in first trimester pregnant women. Diagnostyka Laboratoryjna 31, 61–67’.Google Scholar
  22. 22.
    Moreira, G. E., Rosa, G. J., Barros, S. B., Vassilieff, V. S., Vassilieff, I. (2001) Antioxidant defence in rat brain regions after developmental lead exposure. Toxicology 169, 145–151.CrossRefGoogle Scholar
  23. 23.
    Morselt, A. F. W. (1991) Environmental pollutants and disease: a. cell biological approach using chronic cadmium exposure in the animal model as a. paradigm case. Toxicology 70, 1–84.CrossRefGoogle Scholar
  24. 24.
    Navarro, C. M., Montilla, P. M., Martin, A., Jimenez, J., Utrilla, P. M. (1993) Free radicals scavenger and antihepatotoxic activity of Rosmarinus. Plant. Med. 59, 312–314.CrossRefGoogle Scholar
  25. 25.
    Nigam, D., Shukla, G. S., Agarwal, A. K. (1999) Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicol. Lett. 106, 151–157.CrossRefGoogle Scholar
  26. 26.
    Pourahmad, J., O’Brien, P. J. (2000) A. comparison of hepatocyte cytotoxic mechanism for Cu2+ and Cd2+. Toxicology 143, 263–273.CrossRefGoogle Scholar
  27. 27.
    Karmakar, R., Bhatttacharya, R., Chatteriee, M. (2000) Biochemical, haematological and histopatho-logical study in relation to time related cadmium-induced hepatotoxicity in mice. Bio. Metals 13, 231–239.Google Scholar
  28. 28.
    Ravanat, J. L., Douki, T., Duez, P., Gremaud, E. (2002) Cellular background level of 8-oxo-7,8-4 dihydro-2’deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 23, 1911–1918.CrossRefGoogle Scholar
  29. 29.
    Richard, M. J., Portal, B., Meo, J. et al. (1992) Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin. Chem. 38, 704–709.PubMedGoogle Scholar
  30. 30.
    Salvatori, F., Talassi, C. B., Salzgeber, S. A., Spinosa, H. S., Bernardi, M. M. (2004) Embryotoxic and long-term effects of cadmium exposure during embryogenesis in rats. Neurotoxicol. Teratol. 26, 673–680.CrossRefGoogle Scholar
  31. 31.
    Shimada, H., Takamure, Y., Shimada, A., Yasutake, A., Waalkes, M. P., Imamura, Y. (2004) Strain differences of cadmium-induced hepatotoxicity in Wistar-Imamichi and Fischer 344 rats: involvement of cadmium accumulation. Toxicology 203, 189–197.CrossRefGoogle Scholar
  32. 32.
    Singhal, R. L., Merali, Z., Hrdina, P. D. (1975) Aspects of the biochemical toxicology of Cadmium. Fed. Proc. 35, 75–80.Google Scholar
  33. 33.
    Snell, C. D. (1956) Biology of the Laboratory Mouse. 5th ed., The Blackiston Company, Philadelphia.Google Scholar
  34. 34.
    Thomas, P., Wofford, H. W., Neff, J. M. (1981) Biochemical stresses responses of striped Mullet (Mugil cephalus L.) to fluorene analogs. Aquat Toxicol. 1, 329–342.CrossRefGoogle Scholar
  35. 35.
    Villeda-Hernandez, J., Barroso, R., Mendez, M., Nava, C., Huerta, R., Rios, C. (2001) Enhanced brain regional lipid peroxidation in developing rats exposed to low level lead acetate. Brain. Res. Bull. 55, 247–251.CrossRefGoogle Scholar
  36. 36.
    Wazelhoff, W. R., Roelofsen, A. M., Peereboom-Stegeman, C. J. H. J. (1985) Light microscopic aspects of the rat placenta after chronic cadmium administration. Sci. Total Environ. 42, 181–184.CrossRefGoogle Scholar
  37. 37.
    Wershana, K. Z. (2001) Cadmium induced toxicity on pregnant mice and their offspring: protection by magnesium or vitamin E. The Sciences 1, 179–186.Google Scholar
  38. 38.
    Whelton, D. B., Paterson, D. P., Moretti, E. S., Mauser, R. W., Bhattacharyya, M. H. (1997) Hepatic levels of cadmium, zinc and copper in multiparous, nulliparous and ovariectomized mice fed either nutrient-sufficient or -deficient diet containing cadmium. Toxicology 119, 141–153.CrossRefGoogle Scholar
  39. 39.
    Wier, P. I., Miller, R. K., Maulik, D., DiSant’Agnese, P. A. (1990) Toxicity of cadmium in the perfused human placenta. Toxicol. Appl. Pharmacol. 105, 156–171.CrossRefGoogle Scholar
  40. 40.
    Wroblewski, F., LaDue, J. S. (1956) Serum glutanmic oxalacetic aminopherase (transaminase) in hepatitis. J. Am. Med. Assoc. 160, 1130–1134.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • S. Chater
    • 1
    • 2
    • 3
    Email author
  • T. Douki
    • 2
  • A. Favier
    • 2
    • 3
  • M. Sakly
    • 1
  • H. Abdelmelek
    • 1
  1. 1.Laboratoire de Physiologie IntégréeFaculté des Sciences de BizerteJarzounaTunisia
  2. 2.DRFMC/SCIBLaboratoire Lésions des Acides Nucléiques CEA/GrenobleGrenoble cedex 9France
  3. 3.Département de Biologie Intégrée, Laboratoire du Stress OxydantHôpital la TrancheGrenobleFrance

Personalised recommendations