Advertisement

Acta Biologica Hungarica

, Volume 59, Supplement 2, pp 1–12 | Cite as

Persistent Na-Channels: Origin and Function

A Review János Salánki Memory Lecture
Article

Abstract

Voltage-dependent sodium channels have a decisive role in the generation of action potentials (AP) in many types of cells. In addition to the fast inactivating Na-current, associated with AP generation, the Na-channel can give rise to a noninactivating or persistent Na-current. The latter current generally comprises up to 5% of the transient current having important physiological consequences. It was established that persistent Na-currents have functional significance in setting the membrane potential in a subthreshold range regulating by this way dendritic depolarisations, repetitive firing and enhancing synaptic transmission. Voltage dependent sodium channel genes have been identified in a variety of invertebrates, as well as mammalian and nonmammalian vertebrates. It has been established that the biophysical properties, pharmacology and gene organization of invertebrate sodium channels are largely similar to the vertebrate ones, supporting the view that the ancestral sodium channel was established before the evolutionary separation of the invertebrates from the vertebrates. Although different isoforms of voltage sensitive Na-channels have now been identified the mechanism for persistent current remains controversial. An important yet unanswered question is whether persistent and fast inactivating Na-currents arise from different sets of sodium channels or whether the persistent Na-current results from different gating of the same channel type. The aim of the present review is to discuss the origin and the function of the persistent current, focusing on data derived from an invertebrate animal.

Keywords

Persistent Na-channel invertebrates vertebrates kinetic models function 

Abbreviations

AP

action potential

INaP

persistent sodium current

INaT

fast inactivating sodium current

AA

amino acid

DRG

dorsal root ganglion

TTX

tetrodotoxin

VDNC

voltage-dependent Nachannel

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, N., Hamam, B. N., Magistretti, J., Alonso, A., Ragsdale, D. S. (2001) Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscienc. 102, 53–64.Google Scholar
  2. 2.
    Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Automatic Contro. 19, 716–723.Google Scholar
  3. 3.
    Alzheimer, C., Schwindt, P. C., Crill, W. E. (1993) Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J. Neurosci. 13, 660–673.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Anderson, P. A. V. (1987) Properties and pharmacology of a TTX-insensitive Na+ current in neurons of the jellyfish Cyanea-Capillata. J. Exp. Biol. 133, 231–248.Google Scholar
  5. 5.
    Angstadt, J. D. (1999) Persistent inward currents in cultured Retzius cells of the medicinal leech. J. Comp. Physiol. [A]. 184, 49–61.Google Scholar
  6. 6.
    Armstrong, C. M., Bezanilla, F., Rojas, E. (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62, 375–391.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Brown, A. M., Schwindt, P. C., Crill, W. E. (1994) Different voltage dependence of transient and persistent Na+ currents is compatible with modal-gating hypothesis for sodium channels. J. Neurophysiol. 71, 2562–2565.PubMedGoogle Scholar
  8. 8.
    Butera, R. J., Jr., Rinzel, J., Smith, J. C. (1999) Models of respiratory rhythm generation in the pre- Botzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82, 382–397.PubMedGoogle Scholar
  9. 9.
    Caffrey, J. M., Eng, D. L., Black, J. A., Waxman, S. G., Kocsis, J. D. (1992) Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res. 592, 283–297.PubMedGoogle Scholar
  10. 10.
    Chandler, W. K., Meves, H. (1970) Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J. Physiol. 211, 653–678.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen, N., Lucero, M. T. (1999) Transient and persistent tetrodotoxin-sensitive sodium currents in squid olfactory receptor neurons. J. Comp. Physiol. . 184, 63–72.Google Scholar
  12. 12.
    Clay, J. R. (2003) On the persistent sodium current in squid giant axons. J. Neurophysiol. 89, 640–644.PubMedGoogle Scholar
  13. 13.
    Colmers, W. F., Lewis, D. V., Wilson, W. A. (1982) Cs+ loading reveals Na+-dependent persistent inward current and negative slope resistance region in Aplysia giant neurons. J. Neurophysiol. 48, 1191–1200.PubMedGoogle Scholar
  14. 14.
    Correa, A. M., Bezanilla, F. (1994) Gating of the squid sodium channel at positive potentials: II. Single channels reveal two open states. Biophys. J. 66, 1864–1878.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Cox, J. J., Reimann, F., Nicholas, A. K., Thornton, G., Roberts, E., Springell, K., Karbani, G., Jafri, H., Mannan, J., Raashid, Y., Al-Gazali, L., Hamamy, H., Valente, E. M., Gorman, S., Williams, R., McHale, D. P., Wood, J. N., Gribble, F. M. Woods, C. G. (2006) An SCN9A channelopathy causes congenital inability to experience pain. Natur. 444, 894–898.Google Scholar
  16. 16.
    Crill, W. E. (1996) Persistent sodium current in mammalian central neurons. Annu. Rev. Physiol. 58, 349–362.PubMedGoogle Scholar
  17. 17.
    Cummins, T. R., Howe, J. R., Waxman, S. G. (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J. Neurosci. 18, 9607–9619.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Davis, R. E., Stuart, A. E. (1988) A persistent, TTX-sensitive sodium current in an invertebrate neuron with neurosecretory ultrastructure. J. Neurosci. 8, 3978–3991.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Defaix, A., Lapied, B. (2005) Role of a novel maintained low-voltage-activated inward current permeable to sodium and calcium in pacemaking of insect neurosecretory neurons. Invert. Neurosci. 5, 135–146.PubMedGoogle Scholar
  20. 20.
    Dib-Hajj, S., Black, J. A., Cummins, T. R., Waxman, S. G. (2002) NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci. 25, 253–259.PubMedGoogle Scholar
  21. 21.
    Elinder, F., Arhem, P. (1997) Tail currents in the myelinated axon of Xenopus laevis suggest a twoopen- state Na channel. Biophys. J. 73, 179–185.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Fleidervish, I. A., Gutnick, M. J. (1996) Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J. Neurophysiol. 76, 2125–2130.PubMedGoogle Scholar
  23. 23.
    French, C. R., Sah, P., Buckett, K. J., Gage, P. W. (1990) A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J. Gen. Physiol. 95, 1139–1157.PubMedGoogle Scholar
  24. 24.
    Gilly, W. F., Armstrong, C. M. (1984) Threshold channels–a novel type of sodium channel in squid giant axon. Natur. 309, 448–450.Google Scholar
  25. 25.
    Hammarström, A. K. M., Gage, P. W. (1999) Nitric oxide increases persistent sodium current in rat hippocampal neurons. J. Physiolog. 520, 451–461.Google Scholar
  26. 26.
    Herzog, R. I., Cummins, T. R., Waxman, S. G. (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J. Neurophysiol. 86, 1351–1364.PubMedGoogle Scholar
  27. 27.
    Hutcheon, B., Miura, R. M., Puil, E. (1996) Subthreshold membrane resonance in neocortical neurons. J. Neurophysiol. 76, 683–697.PubMedGoogle Scholar
  28. 28.
    Kallen, R. G., Sheng, Z. H., Yang, J., Chen, L. Q., Rogart, R. B., Barchi, R. L. (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuro. 4, 233–242.Google Scholar
  29. 29.
    Kay, A. R., Sugimori, M., Llinas, R. (1998) Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. J. Neurophysiol. 80, 1167–1179.PubMedGoogle Scholar
  30. 30.
    Kirsch, G. E., Brown, A. M. (1989) Kinetic properties of single sodium channels in rat heart and rat brain. J. Gen. Physiol. 93, 85–99.PubMedGoogle Scholar
  31. 31.
    Kiss, T. (2003) Evidence for a persistent Na-conductance in identified command neurones of the snail, Helix pomatia. Brain Res. 989, 16–25.PubMedGoogle Scholar
  32. 32.
    Kiss, T., Pirger, Z., Kemenes, G. (2008) Food aversive conditioning increases persistent current carried in withdrawal interneurons. Learn. Memory (submitted).Google Scholar
  33. 33.
    Llinas, R., Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. 305, 171–195.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Magistretti, J., Alonso, A. (1999) Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and singlechannel study. J. Gen. Physiol. 114, 491–509.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Magistretti, J., Ragsdale, D. S., Alonso, A. (1999) High conductance sustained single-channel activity responsible for the low-threshold persistent Na(+) current in entorhinal cortex neurons. J. Neurosci. 19, 7334–7341.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Maurice, N., Tkatch, T., Meisner, M., Sprunger, L. K., Surmeier, D. J. (2001) D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and presistent sodium currents in prefrontal cortex pyramid. J. Neurosci. 21, 2268–2277.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Mittmann, T., Alzheimer, C. (1998) Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons. J. Neurophysiol. 79, 1579–1582.PubMedGoogle Scholar
  38. 38.
    Nagy, K., Kiss, T., Hof, D. (1983) Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states. Pflugers Arch. 399, 302–308.PubMedGoogle Scholar
  39. 39.
    Nikitin, E. S., Kiss, T., Staras, K., O’Shea, M., Benjamin, P. R., Kemenes, G. (2006) Persistent sodium current is a target for cAMP-induced neuronal plasticity in a state-setting modulatory interneuron. J. Neurophysiol. 95, 453–463.PubMedGoogle Scholar
  40. 40.
    Nikitin, E. S., Vavoulis, D. V., Feng, J., O’Shea, M., Benjamin, P. R., Kemenes, G. (2008) Persistent sodium current is a non-synaptic substrate for memory (submitted).Google Scholar
  41. 41.
    Ochs, G., Bromm, B., Schwarz, J. R. (1981) A three-state model for inactivation of sodium permeability. Biochim. Biophys. Act. 645, 243–252.Google Scholar
  42. 42.
    Ogata, N., Ohishi, Y. (2002) Molecular diversity of structure and function of the voltage-gated Na+ channels. Jpn. J. Pharmacol. 88, 365–377.PubMedGoogle Scholar
  43. 43.
    Opdyke, C. A., Calabrese, R. L. (1994) A persistent sodium current contributes to oscillatory activity in heart interneurons of the medicinal leech. J. Comp. Physiol. [A]. 175, 781–789.Google Scholar
  44. 44.
    Patlak, J. B., Ortiz, M. (1985) Slow currents through single sodium channels of the adult rat heart. J. Gen. Physiol. 86, 89–104.PubMedGoogle Scholar
  45. 45.
    Patlak, J. B., Ortiz, M. (1986) Two modes of gating during late Na+ channel currents in frog sartorius muscle. J. Gen. Physiol. 87, 305–326.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Plummer, N. W., Meisler, M. H. (1999) Evolution and diversity of mammalian sodium channel genes. Genomic. 57, 323–331.Google Scholar
  47. 47.
    Raman, I. M., Bean, B. P. (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J. Neurosci. 17, 4517–4526.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Raman, I. M., Bean, B. P. (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J. Neurosci. 19, 1663–1674.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Raman, I. M., Bean, B. P. (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys. J. 80, 729–737.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Renganathan, M., Dib-Hajj, S., Waxman, S. G. (2002) Na(v)1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons. Brain Res. Mol. Brain Res. 106, 70–82.PubMedGoogle Scholar
  51. 51.
    Roy, M. L., Narahashi, T. (1992) Differential properties of tetradotoxin-sensitive and tetrodotoxinresistant sodium channels in rat dorsal root ganglion neurons. J. Neurosci. 12, 2104–2111.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Rudy, B. (1978) Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. 283, 1–21.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Saint, D. A., Ju, Y. K., Gage, P. W. (1992) A persistent sodium current in rat ventricular myocytes. J. Physiol. 453, 219–231.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Salgado, V. L., Yeh, J. Z., Narahashi, T. (1985) Voltage-dependent removal of sodium inactivation by N-bromoacetamide and pronase. Biophys. J. 47, 567–571.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Stimers, J. R., Byerly, L. (1982) Slowing of sodium current inactivation by ruthenium red in snail neurons. J. Gen. Physiol. 80, 485–497.PubMedGoogle Scholar
  56. 56.
    Taddese, A., Bean, B. P. (2002) Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuro. 33, 587–600.Google Scholar
  57. 57.
    The, Y. K., Fernandes, J., Popa, M. O., Alekov, A. K., Timmer, J., Lerche, H. (2006) Modeling of single noninactivating Na+ channels: evidence for two open and several fast inactivated states. Biophys. J. 90, 3511–3522.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Trimmer, J. S., Cooperman, S. S., Tomiko, S. A., Zhou, J. Y., Crean, S. M., Boyle, M. B., Kallen, R. G., Sheng, Z. H., Barchi, R. L., Sigworth, F. J. et al. (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuro. 3, 33–49.Google Scholar
  59. 59.
    Turrigiano, G., LeMasson, G., Marder, E. (1995) Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J. Neurosci. 15, 3640–3652.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Ulbricht, W. (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85, 1271–1301.PubMedGoogle Scholar
  61. 61.
    Waxman, S. G., Hains, B. C. (2006) Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci. 29, 207–215.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Experimental Zoology, Balaton Limnological Research InstituteHungarian Academy of SciencesTihanyHungary

Personalised recommendations