Advertisement

Acta Biologica Hungarica

, Volume 59, Issue 4, pp 413–424 | Cite as

Rat Testicular Mitochondrial Antioxidant Defence System and its Modulation By Aging

  • D. K. Sahoo
  • Anita Roy
  • G. B. N. ChainyEmail author
Article

Abstract

Accumulation of oxidative damage caused by reactive oxygen species (ROS) underlies fundamental changes found during aging. In the present study, age related effect on testicular mitochondrial oxidant generation and antioxidant defence profile was investigated in Wistar rats at 3 months (young adults), 12 months (old adults) and 24 months (senescent animals) of age. Mitochondrial oxidative stress parameters viz., lipid peroxidation (LPx), protein carbonylation, hydrogen peroxide (H202) generation and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), levels of total, oxidized (GSSG) and reduced glutathione (GSH) were studied to find out their roles in maintenance of mitochondrial glutathione redox pool as a function of age. Increased levels of LPx, H202 and decreased GSH content accompanied by a decline in activities of SOD, GPx and GR with advancing age suggest that antioxidant defense profile of testicular mitochondria exhibit age related alterations which might play a critical role in regulating physiological functions of the testis such as steroidogenesis and spermatogenesis.

Keywords

Aging rat testes mitochondria reactive oxygen species oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao, L., Leers-Sucheta, S., Azhar, S. (2004) Aging alters the functional expression of enzymatic and non-enzymatic antioxidant defence system in testicular rat Leydig cells. J. Steroid Biochem. Mol. Biol. 88, 61–70.CrossRefGoogle Scholar
  2. 2.
    Capel, F., Rimbert, V., Lioger, D., Diot, A., Rousset, P., Mirand, P. P., Boirie, Y., Morio, B., Mosoni, L. (2005) Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mech. Ageing Dev. 126, 505–511.CrossRefGoogle Scholar
  3. 3.
    Carmagnol, F., Sinet, P. M., Jerome, H. (1983) Selenium-dependent and non-selenium-dependent glutathione peroxidases in human tissue extracts. Biochim. Biophys. Acta 759, 49–57.CrossRefGoogle Scholar
  4. 4.
    Chen, J., Irizarry, R. A., Luo, L., Zirkin, B. R. (2004) Leydig cells gene expression: Effect of age and caloric restriction. Expt. Gerontol. 39, 31–40.CrossRefGoogle Scholar
  5. 5.
    Cohen, G., Dembiec, D., Marcus, J. (1970) Measurement of catalase activity in tissue extracts. Anal. Biochem. 34, 30–38.CrossRefGoogle Scholar
  6. 6.
    Das, K., Samanta, L., Chainy, G. B. N. (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation of superoxide radicals. Ind. J. Biochem. Biophys. 37, 201–204.Google Scholar
  7. 7.
    de la Asuncion, J. G., Millan, A., Pla, R., Bruseghini, L., Esteras, A., Pallardo, F. V., Sastre, J., Vina, J. (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J. 10, 333–338.CrossRefGoogle Scholar
  8. 8.
    Fucci, L., Oliver, C. N., Coon, M. J., Stadtman, E. R. (1983) Inactivation of key metabolic enzymes by mixed function oxidation reactions: possible implication in protein turnover and aging. Proc. Nat. Acad. Sci. USA 80, 1521–1525.CrossRefGoogle Scholar
  9. 9.
    Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300.CrossRefGoogle Scholar
  10. 10.
    Kaur, A. (2005) Changes in peroxidase activity and structure of testes, epididymis and seminal vesicles in aging Swiss albino mice. Ind. J. Gerontol. 19, 119–126.Google Scholar
  11. 11.
    Kumaran, S., Deepak, B., Naveen, B., Panneerselvam, C. (2003) Effects of levocarnitine on mitochondrial antioxidant systems and oxidative stress in aged rats. Drugs R.D. 4, 141–147.CrossRefGoogle Scholar
  12. 12.
    Lee, C. Y. (1982) Glucose-6-phosphate dehydrogenase from mouse. Methods Enzymol. 89, 252–260.CrossRefGoogle Scholar
  13. 13.
    Lee, H. C., Wei, Y. H. (2000) Mitochondrial role in life and death of the cell. J. Biomed. Sci. 7, 2–15.CrossRefGoogle Scholar
  14. 14.
    Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., Stadtman, E. R. (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464–478.CrossRefGoogle Scholar
  15. 15.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  16. 16.
    Luo, L., Chen, H., Trush, M. A., Show, M. D., Anway, M. D., Zirkin, B. R. (2006) Aging and the brown Norway rat Leydig cell antioxidant defence system. J. Androl. 27, 240–247.CrossRefGoogle Scholar
  17. 17.
    Massey, V., Williams, C. H. (1965) On the reaction mechanism of yeast glutathione reductase. J. Biol. Chem. 240, 4470–4481.PubMedGoogle Scholar
  18. 18.
    Matsubara, L. S., Machado, P. E. A. (1991) Age related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes. Brazil. J. Med. Biol. Res. 24, 449–459.Google Scholar
  19. 19.
    Miquel, J., Economos, A. C, Fleming, J., Johnson, J. E. Jr. (1980) Mitochondrial role in cell aging. Exp. Gerontol. 15, 579–591.CrossRefGoogle Scholar
  20. 20.
    Nagley, P., Wei, Y. H. (1998) Ageing and mammalian mitochondrial genetics. Trends Genet. 14, 513–517.CrossRefGoogle Scholar
  21. 21.
    Navarro, A., Boveris, A. (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1244–R1249.CrossRefGoogle Scholar
  22. 22.
    Ohkawa, H., Ohishi, N., Yagi, K. (1979) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.CrossRefGoogle Scholar
  23. 23.
    Paglia, D. E., Valentine, W. N. (1967) Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169.PubMedGoogle Scholar
  24. 24.
    Peltola, V., Huhtaniemi, I., Ahotupa, M. (1992) Antioxidant enzyme activity in the maturing rat testis. J. Androl. 13, 450–455.PubMedGoogle Scholar
  25. 25.
    Pick, E., Keisari, Y. (1981) Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages-induction by multiple nonphagocytic stimuli. Cell. Immunol. 59, 301–318.CrossRefGoogle Scholar
  26. 26.
    Sahoo, D. K., Roy, A., Bhanja, S., Chainy, G. B. N. (2005) Experimental hyperthyroidism-induced oxidative stress and impairment of antioxidant defence system in rat testis. Ind. J. Exp. Biol. 43, 1058–1067.Google Scholar
  27. 27.
    Sahoo, D. K., Roy, A., Bhanja, S., Chainy, G. B. N. (2008) Hypothyroidism impairs antioxidant defence system and testicular physiology during development and maturation. Gen. Comp. Endocrinol. 156, 63–70.CrossRefGoogle Scholar
  28. 28.
    Sahoo, D. K., Roy, A., Chattopadhyay, S., Chainy, G. B. N. (2007) Effect of T3 treatment on glutathione redox pool and its metabolizing enzymes in mitochondrial and post-mitochondrial fractions of adult rat testes. Ind. J. Exp. Biol. 45, 338–346.Google Scholar
  29. 29.
    Samanta, L., Chainy, G. B. N. (1997) Comparison of hexachlorocyclohexane-induced oxidative stress in the testis of immature and adult rats. Comp. Biochem. Physiol. 118, 319–327.Google Scholar
  30. 30.
    Samanta, L., Chainy, G. B. N. (2002) Effect of age on testicular antioxidant defence system. Ind. J. Gerontol. 16, 69–78.Google Scholar
  31. 31.
    Samanta, L., Roy, A., Chainy, G. B. N. (1999) Changes in rat testicular antioxidant defence profile as a function of age and its impairment by hexachlorocyclohexane during critical stages of maturation. Andrologia 31, 83–90.CrossRefGoogle Scholar
  32. 32.
    Sastre, J., Pallardo, F. V., Vina, J. (2003) The role of mitochondrial oxidative stress in aging. Free Rad. Biol. Med. 35, 1–8.CrossRefGoogle Scholar
  33. 33.
    Sharma, R., Nakamura, A., Takahashi, R., Nakamoto, H., Goto, S. (2006) Carbonyl modification in rat liver histones: Decrease with age and increase by dietary restriction. Free Rad. Biol. Med. 40, 1179–1184.CrossRefGoogle Scholar
  34. 34.
    Shigenaga, M. K., Hagen, T. M., Ames, B. N. (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 91, 10771–10778.CrossRefGoogle Scholar
  35. 35.
    Sohal, R. S. (1993) The free radical hypothesis of aging: an appraisal of the current status. Aging Clin. Exp. Res. 5, 3–17.CrossRefGoogle Scholar
  36. 36.
    Sohal, R. S., Arnold, L. A., Sohal, B. H. (1990) Age related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radic. Biol. Med. 10, 495–500.CrossRefGoogle Scholar
  37. 37.
    Teaf, C. M., Harbison, R. D., Bishop, J. B. (1985) Germ-cell mutagenesis and GSH depression in reproductive tissue of the F-344 rat induced by ethyl methanesulfonate. Mut. Res. 144, 93–98.CrossRefGoogle Scholar
  38. 38.
    Zirkin, B. R., Chen, H. (2000) Regulation of leydig cell steroidogenic function during aging. Biol. Reprod. 63, 977–981.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of ZoologyUtkal UniversityBhubaneswarIndia
  2. 2.Department of BiotechnologyUtkal UniversityBhubaneswarIndia

Personalised recommendations