A Pilot Study of Cerasorb and Bio-Oss Enhanced New Bone Formation in Animal Model

Abstract

The aim of this pilot investigation was to develop a new animal model for studying the effects on osteogenesis of agents used in the guided bone regeneration technique. As test material, a mixture of two osseoconductive materials with different physico-chemical characteristics was used. One component of the mixture was Bio-Oss, a bovine hydroxyapatite; the other was Cerasorb, a synthetic tricalcium phosphate. The mixture consisited of 50 volume percent of Bio-Oss and 50 volume percent of Cerasorb. I. in vivo pilot experiment, bone wounds were prepared in the proximal third of both femurs of rabbits. A Cerasorb + Bio-Oss mixture was inserted on the test side and the same amount of sterile buffered physiological solution on the control side. After healing for 4 weeks, the bone segments were embedded and cut without decalcification, using the Exact cutting and grinding system. The density of the newly-formed bone was evaluated histomorphometrically. On the Cerasorb + Bio-Oss test side the bone density was almost 1.5 times higher than that on the control side. These results demonstrated that the applied animal model is appropriate for investigation of the effects on osteogenesis of biocompatible graft materials such as Bio-Oss and Cerasorb.

References

  1. 1.

    Chen, W. J., Jingushi, S., Jingushi, K., Iwamoto, Y. (2006) In vivo banking for vascularized autograft bone by intramuscular inoculation of recombinant human bone morphogenetic protein-2 and ß-tri-calcium phosphate. J. Orthop. Sci. 11, 283–288.

    CAS  Article  Google Scholar 

  2. 2.

    Donath, K., Breuner, G. (1982) A method for the study of undecalcified bones and teeth with attached soft tissue. The Saege-Schliff Technik (sawing and grinding technique). J. Oral Pathol. 11, 318–326.

    CAS  Article  Google Scholar 

  3. 3.

    Hämmerle, C. H. F., Chiantella, G. C., Karring, T., Lang, N. P. (1998) The effect of a deproteinized bovine bone minerals on bone regeneration around dental implants. Clin. Oral Implant Res. 9, 151–162.

    Article  Google Scholar 

  4. 4.

    Hoshino, M., Egi, T., Terai, H., Namikawa, T., Takaoka, K. (2006) Repair of long intercalated rib defects using porous beta-tricalcium phosphate cylinders containing recombinant human bone morphogenetic protein-2 in dogs. Biomaterials 27, 4934–4940.

    CAS  Article  Google Scholar 

  5. 5.

    Jensen, S. S., Broggini, N., Hjørting-Hansen, E., Schenk, R., Buser, D. (2006) Bone healing and graft resorption of autograft, anorganic bovine bone and ß-tricalcium phosphate. A histologic and histo-morphometric study in the mandibles of minipigs. Clin. Oral Implant Res. 17, 237–243.

    Article  Google Scholar 

  6. 6.

    Lynch, S. E., Genco, R. J., Marx, R. E. (1999) Tissue Engineering: Applications in Maxillofacial Surgery and Periodontics. Quintessence Publishing Co., Inc.

    Google Scholar 

  7. 7.

    Orsini, G., Traini, T., Scarano, A., Degidi, M., Perrotti, V., Piccirilli, M., Piattelli, A. (2005) Maxillary sinus augmentation with Bio-Oss particles: A light, scanning, and transmission electron microscopy study in man. J. Biomed. Mater Res. Part B: Appl. Biomater. 74B, 448–457.

    CAS  Article  Google Scholar 

  8. 8.

    Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., Recker, R. R. (1987) Bone histomorphometry: standardisation of nomenclature, symbols, and units. J. of Bone and Mineral Res. 2, 595–610.

    CAS  Article  Google Scholar 

  9. 9.

    Schaffler, M. B., Reimann, D. A., Parfitt, A. M., Fyhrie, D. P. (1997) Which stereologic methods offer the greatest help in quantifying trabecular structure from biological and mechanical perspectives. Forma 12, 197–207.

    Google Scholar 

  10. 10.

    Schlegel, A. K., Donath, K. (1998) Bio-Oss - a resorbable bone substitute. J. Long-Term Effects Med. Implants 8, 201–209.

    CAS  Google Scholar 

  11. 11.

    Suba, Z., Takács, D., Gyulai-Gaál, S., Kovács, K. (2004) Facilitation of ß-tricalcium phosphate-induced alveolar bone regeneration by platelet-rich plasma in beagle dogs: a histologic and histo-morphometric study. Int. J. Oral Maxillofac. Implants 19, 832–838.

    PubMed  Google Scholar 

  12. 12.

    Suba, Zs., Takács, D., Matusovits, D., Barabás, J., Fazekas, A., Szabó, Gy. (2006) Maxillary sinus floor grafting with ß-tricalcium phosphate in humans: density and microarchitecture of the newly formed bone. Clin. Oral Impl. Res. 17, 102–108.

    Article  Google Scholar 

  13. 13.

    Tadjoedin, E. S., de Lange, G. L., Bronckers, A. L. J. I., Lyaruu, D. M., Burger, E. H. (2003) Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. J. Clin. Periodontal. 30, 261–270.

    CAS  Article  Google Scholar 

  14. 14.

    Urist, M. R. (1965) Bone formation by autoinduction. Science 150, 893–899.

    CAS  Article  Google Scholar 

  15. 15.

    Zerbo, I. R., Bronckers, A. L. J. J., de Lange, G. L., Burger, E. H. (2005) Localization of osteogenic and osteoclastic cells in porous ß-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials 26, 1445–1451.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danica Matusovits.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Matusovits, D., Suba, Z., Takács, D. et al. A Pilot Study of Cerasorb and Bio-Oss Enhanced New Bone Formation in Animal Model. BIOLOGIA FUTURA 59, 327–334 (2008). https://doi.org/10.1556/ABiol.59.2008.3.6

Download citation

Keywords

  • Bio-Oss
  • Cerasorb
  • osteogenesis
  • rabbit model
  • histomorphometry