Acta Biologica Hungarica

, Volume 59, Issue 3, pp 315–325 | Cite as

Comet Assay to Determine DNA Damage Induced by Food Deprivation in Rats

  • Gabrielle de Souza Rocha
  • A. S. FonsecaEmail author
  • Michelle P. Rodrigues
  • F. J. S. Dantas
  • A. Caldeira-de-Araujo
  • R. Santos


The aim of this work was to evaluate, by comet assay, the possible inducing of DNA lesions in peripheral blood mononuclear cells of rats subjected to acute or chronic food deprivation. Wistar male rats were subjected to 72 h of partial (50%), or total acute food deprivation, and then allowed to recover for different time periods (24, 48 and 72 h). In other experiments, comet scores were determined in peripheral blood mononuclear cells of rats subjected to chronic food deprivation (25% and 50%) for 50 days. Blood aliquots were obtained before, during and after food deprivation. Comet assay was carried out, the comet units photographed and scored (class 0 up to 3). Acute and chronic food-deprived rats presented peripheral blood mononuclear cells with DNA lesions (comet classes 1, 2 and 3) and a significant increase (p<0.05) in the number of comet units compared with its basal level. The increase was proportional to acute food deprivation time, but after being taken off, it progressively returned to basal level after 48 h (partial group) or 72 h (total group). Chronic food-deprived rats presented a progressive increase of comet score up to 5 days, and a decrease thereafter to reach a basal level. Possible mechanisms of DNA lesions are discussed.


Comet assay DNA lesions food deprivation stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anson, R. M., Guo, Z., de Cabo, R., Iyun, T., Rios, M., Hagepanos, A., Ingram, D. K., Lane, M. A., Mattson, M. P. (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Nat. Acad. Sci. USA 100, 6216–6220.PubMedGoogle Scholar
  2. 2.
    Aravich, P. F., Rieg, T. S., Lauterio, T. J., Doerries, L. E. (1993) ß-Endorphin and dynorphin abnormalities rats subjected to exercise and restricted feeding: relationship to anorexia nervosa. Brain Res. 622, 1–8.PubMedGoogle Scholar
  3. 3.
    Armeni, T., Tomasetti, M., Svegliati Baroni, S., Saccucci, F., Marra, M., Pieri, C., Littarru, G. P., Principato, G., Battino, M. (1997) Dietary restriction affects antioxidant levels in rat liver mitochondria during ageing. Mol. Aspects Med. 18, S247–250.PubMedGoogle Scholar
  4. 4.
    Barja, G. (2002) Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res. Rev. 1, 397–411.Google Scholar
  5. 5.
    Barja, G. (2004) Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism. Biol. Rev. Camb. Philos. Soc. 79, 235–251.PubMedGoogle Scholar
  6. 6.
    Birt, D. F., Yaktine, A., Duysen, E. (1999) Glucocorticoid mediation of dietary energy restriction inhibition of mouse skin carcinogenesis. J. Nutr. 129, 571S–574S.PubMedGoogle Scholar
  7. 7.
    Bodiga, V. L., Boindala, S., Putcha, U., Subramaniam, K., Manchala, R. (2005) Chronic low intake of protein or vitamins increases the intestinal epithelial cell apoptosis in Wistar / NIN rats. Nutrition 21, 949–960.PubMedGoogle Scholar
  8. 8.
    Boer, D. P., Epling, W. F., Pierce, W. D., Russel, J. C. (1990) Suppression of food deprivation-induced high-rate wheel running in rats. Physiol. Behav. 48, 339–342.Google Scholar
  9. 9.
    Cavallini, G., Donati, A., Gori, Z., Pollera, M., Bergamini, E. (2001) The protection of rat liver autophagic proteolysis from the age-related decline co-varies with the duration of anti-ageing food restriction. Exp. Gerontol. 36, 497–506.PubMedGoogle Scholar
  10. 10.
    Courier, L. A., Musafia-Jeknic, T., Fischer, K., Bildfell, R., Giovanini, J., Pereira, C., Baird, W. M. (2007) Urban dust particulate matter alters PAH-induced carcinogenesis by inhibition of CYP1 Al and CYP 1B1. Toxicol. Sci. 95, 63–73.Google Scholar
  11. 11.
    Dallman, M. F. (1993) Stress update: adaptation of the hypothalamic-pituitary-adrenal axis to chronic stress. Trends Endocrinol. Metab. 4, 62–69.PubMedGoogle Scholar
  12. 12.
    Dantas, F. I., de Mattos, J. C., Moraes, M. O., Viana, M. E., Lage, C. A., Cabral-Neto, J. B., Leitão, A. C., Bernardo-Filho, M., Bezerra, R. J., Carvalho, J. J., Caldeira-de-Araujo, A. (2002) Genotoxic effects of stannous chloride (SnC12) in K562 cell line. Food Chem. Toxicol. 40, 1493–1498.PubMedGoogle Scholar
  13. 13.
    Di Simplicio, P., Rossi, R., Falcinelli, S., Ceserani, R., Formento, M. L. (1997) Antioxidant status of various tissues of the mouse after fasting and swimming stress. Eur. J. Appl. Occupation Physiol. 76, 302–307.Google Scholar
  14. 14.
    Domenicali, M., Caraceni, P., Vendemiale, G., Grattagliano, I., Nardo, B., DallAgata, M., Santoni, B., Trevisani, F., Cavallari, A., Altomare, E., Bernardi, M. (2001) Food deprivation exacerbates mitochondrial oxidative stress in rat liver exposed to ischemia-reperfusion injury. J. Nutr. 131, 105–110.PubMedGoogle Scholar
  15. 15.
    Endou, M., Yanai, K., Sakurai, E., Fukudo, S., Hongo, M., Watanabe, T. (2001) Food-deprived activity stress decreased the activity of the histaminergic neuron system in rats. Brain Res. 891, 32–41.PubMedGoogle Scholar
  16. 16.
    Frame, L. T., Hart, R. W., Leakey, J. E. (1998) Caloric restriction as mechanism mediating resistance to environmental disease. Environ. Health Perspect. 106 (Suppl 1), 313–324.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gedik, C. M., Grant, G., Morrice, P. C., Wood, S. G., Collins, A. R. (2005) Effects of age and dietary restriction on oxidative DNA damage, antioxidant protection and DNA repair in rats. Eur. J. Nutr. 44, 263–272.PubMedGoogle Scholar
  18. 18.
    Guo, Z., Yang, H., Hamilton, M. L., VanRemmen, H., Richardson, A. (2001) Effects of age and food restriction on oxidative DNA damage and antioxidant enzyme activities in the mouse aorta. Mech. Ageing Dev. 122, 1771–1786.PubMedGoogle Scholar
  19. 19.
    Hamilton, M. L., Van Remmen, H., Drake, J. A., Yang, H., Guo, Z. M., Kewitt, K., Walter, C. A., Richardson, A. (2001) Does oxidative damage to DNA increase with age. Proc. Natl. Acad. Sci. USA 98, 10469–10474.PubMedGoogle Scholar
  20. 20.
    Holtenius, K., Dahlborn, K. (1990) Water and sodium movements across the ruminai epithelium in fed and food-deprived sheep. Exp. Physiol. 75, 51–61.Google Scholar
  21. 21.
    Kaneko, T., Tahara, S., Matsuo, M. (1997) Retarding effect of dietary restriction on the accumulation of 8-hydroxy-2’-deoxyguanosine in organs of Fischer 344 rats during aging. Free Radic. Biol. Med. 23, 76–81.PubMedGoogle Scholar
  22. 22.
    Kubo, C., Gajjar, A., Johnson, B. C., Good, R. A. (1992) The effects of dietary restriction on immune function and development of autoimmune disease in BXSB mouse. Proc. Nat. Acad. Sci. USA 89, 3145–3149.PubMedGoogle Scholar
  23. 23.
    Leal, A. M., Forsling, M. L., Moreira, A. C. (1995) Diurnal variation of the pituitary-adrenal and AVP responses to stress in rats under food restriction. Life Sci. 56, 191–198.PubMedGoogle Scholar
  24. 24.
    Liu, P. T., Ioannides, C., Shavila, J., Symons, A. M., Parke, D. V. (1993) Effects of ether anesthesia and fasting on various cytochromes P of rat liver and kidney. Biochem. Pharmacol. 45, 871–877.PubMedGoogle Scholar
  25. 25.
    Masoro, E. J. (1993) Dietary restriction and aging. J. Am. Geriatr. Soc. 41, 994–999.PubMedGoogle Scholar
  26. 26.
    Masoro, E. J. (2000) Caloric restriciton and aging: an update. Exp. Gerontol. 35, 299–305.PubMedGoogle Scholar
  27. 27.
    Miranda, D. D., Arcari, D. P., Ladeira, M. S., Calori-Domingues, M. A., Romero, A. C., Salvadori, D. M., Gloria, E. M., Pedrazzoli, J. Jr., Ribeiro, M. L. (2007) Analysis of DNA damage induced by aflatoxin B in Dunkin-Hartley guinea pigs. Mycopathol. 163, 275–280.Google Scholar
  28. 28.
    Nakamura, H., Kouda, K., Tokunaga, R., Takeuchi, H. (2004) Suppressive effects on delayed type hypersensitivity by fasting and dietary restriction in ICR mice. Toxicol. Lett. 146, 259–267.PubMedGoogle Scholar
  29. 29.
    Ostling, O., Johnson, J. (1984) Microelectrophoretic studies of radiation induced DNA damage in individual mammalian cells. Biochem. Biophys. Res. Commun. 123, 291–298.PubMedGoogle Scholar
  30. 30.
    Pascual, P., Pedrajas, J. R., Toribio, F., López-Barea, J., Peinado, J. (2003) Effect of food deprivation on oxidative stress biomarkers in fis. (Spams aurata). Chem. Biol. Interact. 145, 191–199.PubMedGoogle Scholar
  31. 31.
    Perkins, S. N., Hursting, S. D., Phang, J. M., Haines, D. C. (1998) Calorie restriction reduces ulcerative dermatitis and infection-related mortality and wild-type mice. J. Invest. Dermatol. 111, 292–296.PubMedGoogle Scholar
  32. 32.
    Radak, Z., Takahashi, R., Kumiyama, A., Nakamoto, H., Ohno, H., Ookawara, T., Goto, S. (2002) Effect of aging and late onset dietary restriction on antioxidant enzymes and proteasome activities, and protein carbonylation of rat skeletal muscle and tendon. Exp. Gerontol. 37, 1423–1430.PubMedGoogle Scholar
  33. 33.
    Ramaiah, S. K., Apte, U., Mehendale, H. M. (2001) Cytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats. Drug Metab. Dispos. 29, 1088–1095.PubMedGoogle Scholar
  34. 34.
    Robinson, M. K., Rustum, R. R., Chambers, E. A., Rounds, I. D., Wilmore, D. W., Jacobs, D. O. (1997) Starvation enhances hepatic free radical release following endotoxemia. J. Surg. Res. 69, 325–330.PubMedGoogle Scholar
  35. 35.
    Singh, I. (1983) Induction of reverse mutation and mitotic gene conversion by some metal compounds i. Saccharomyces cerevisae. Mutat. Res. 117, 149–152.PubMedGoogle Scholar
  36. 36.
    Sogawa, H., Kubo, C. (2000) Influence of short-term repeated fasting on the longevity of female (NZBxNZW)Fl mice. Meck Ageing Dev. 15, 61–71.Google Scholar
  37. 37.
    Turner, D. R., Dreimanis, M., Holt, D., Firgaira, F. A., Morley, A. A. (2003) Mitotic recombination is an important mutational event following oxidative damage. Mutat. Res. 522, 21–26.PubMedGoogle Scholar
  38. 38.
    Underwood, D. C., Matthews, J. K., Osborn, R. R., Hay, D. W. (1998) Food restriction-mediated adrenal influences on antigen-induced bronchoconstriction and airway eosinophil influx in the guinea pig. Int. Arch. Allergy Immunol. 117, 52–59.PubMedGoogle Scholar
  39. 39.
    Usuki, F., Yasutake, A., Umehara, F., Higuchi, I. (2004) Beneficial effects of mild lifelong dietary restriction on skeletal muscle: prevention of age-related mitochondrial damage, morphological changes, and vulnerability to a chemical toxin. Acta Neuropathol. (Berl). 108, 1–9.Google Scholar
  40. 40.
    Van Remmen, H., Hamilton, M. L., Richardson, A. (2003) Oxidative damage to DNA and aging. Exerc. Sport Sci. Rev. 31, 149–153.PubMedGoogle Scholar
  41. 41.
    Van Remmen, H., Guo, Z., Richardson, A. (2001) The anti-ageing action of dietary restriction. Novartis Found Symp. 235, 221–230.PubMedGoogle Scholar
  42. 42.
    Vogt, B. L., Richie, J. P. (1993) Fasting-induced depletion of glutathione in the aging mouse. Biochem. Pharmacol. 46, 257–263.PubMedGoogle Scholar
  43. 43.
    Wan, R., Camandola, S., Mattson, M. P. (2003) Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J. Nutr. 133, 1921–1929.PubMedGoogle Scholar
  44. 44.
    Ward, T. H., Butler, J., Shahbakhti, H., Richards, J. (1997) Comet assay studies on the activation of two diaziridinylbenzoquinones in K562 cells. Biochem. Pharmacol. 53, 1115–1121.PubMedGoogle Scholar
  45. 45.
    Wohaieb, S. A., Godin, D. V (1987) Starvation-related alterations in free radical tissue defense mechanisms in rats. Diabetes 36, 169–173.PubMedGoogle Scholar
  46. 46.
    Yanai, S., Okaichi, Y., Okaichi, H. (2004) Long-term dietary restriction causes negative effects on cognitive functions in rats. Neurobiol. Aging 25, 325–332.PubMedGoogle Scholar
  47. 47.
    Yaktine, A. L., Vaughn, R., Blackwood, D., Duysen, E., Birt, D. F (1998) Dietary energy restriction in the SENCAR mouse: elevation of glucocorticoid hormone levels but no change in distribution of glucocorticoid receptor in epidermal cells. Mol. Carcinog. 21, 62–69.PubMedGoogle Scholar
  48. 48.
    Yu, B. P., Masoro, E. I., McMahan, C. A. (1985) Nutritional influences on aging of Fischer 344 rats: I physical, metabolic and longevity characteristics. J. Gerontol. 40, 657–670.PubMedGoogle Scholar
  49. 49.
    Yu, B. P. (1996) Aging and oxidative stress: modulation by dietary restriction. Free Radic. Biol. Med. 21, 651–668.PubMedGoogle Scholar
  50. 50.
    Yu, B. P., Chung, H. Y. (2001) Stress resistance by caloric restriction for longevity. Ann. N. Y. Acad. Sci. 928, 39–47.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Gabrielle de Souza Rocha
    • 1
  • A. S. Fonseca
    • 2
    Email author
  • Michelle P. Rodrigues
    • 1
  • F. J. S. Dantas
    • 2
  • A. Caldeira-de-Araujo
    • 2
  • R. Santos
    • 1
  1. 1.Departamento de Farmacologia e PsicobiologiaUniversidade do Estado do Rio de JaneiroFundosBrasil
  2. 2.Departamento de Biofisica e Biometria, Institute de Biologia Roberto Alcantara GomesUniversidade do Estado do Rio de JaneiroFundosBrasil

Personalised recommendations