Advertisement

Acta Biologica Hungarica

, Volume 59, Issue 3, pp 281–288 | Cite as

Boric Acid-Induced Effects on Protein Profiles of Galleria Mellonella Hemolymph and Fat Body

  • P. HyršlEmail author
  • Ender Büyükgüzel
  • K. Büyükgüzel
Article

Abstract

The dietary effects of boric acid (BA) on the protein profiles of greater wax moth. Galleria mello-nella (L.), were investigated in hemolymph and fat body of final instar (VIIth) and pupae. The insects were reared from first-instar larvae on an artificial diets containing 156, 620, 1250 or 2500 ppm of BA. We detected many undetermined protein fractions (6.5–260 kDa) in addition to well-defined protein fractions such as lipophorins and storage proteins in the tissues by using sodium dodecyl-sulphate Polyacrylamide gradient gel electrophoresis. A marked quantitative change in the 45 kDa protein fraction of the hemolymph was observed in the Vllth instar larvae reared on 2500 ppm dietary BA.

Keywords

Galleria mellonella boric acid protein profiles hemolymph fat body 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, S., Wilkins, R., Mantle, D. (2002) Comparative effect of various insecticides on intracellular proteases in an insecticide-resistant and susceptible strains o. Musca domestica L. J. Biol. Sci. 2, 183–185.CrossRefGoogle Scholar
  2. 2.
    Berge, J. B., Feyereisen, R., Amichot, M. (1998) Cytochrome P450 monooxygenases and insecticide resistance in insects. Phil. Trans. R. Soc. Lond. B, 353, 1701–1705.CrossRefGoogle Scholar
  3. 3.
    Bollag, D. M., Rozycki, M. D., Edelstein, S. I (1996) Protein Methods. John Wiley & Sons Inc. Publication, 2nd edition, New York, Chichester, Brisbane, Toronto, Singapore.Google Scholar
  4. 4.
    Bronskill, J. (1961) A cage to simplify the rearing of the greater wax moth. Galleria mellonella (Pyralidae). Journal of the Lepidopterist’s Society 15, 102–104.Google Scholar
  5. 5.
    Brown, D., Zhang, L., Wen, Z., Scott, J. G. (2003) Induction of P450 monooxygenases in the German cockroach. Blattella germanica L. Arch. Insect Biochem. Physiol. 53, 119–124.CrossRefGoogle Scholar
  6. 6.
    Charriere, J. D., Imdorf, A. (1997) Protection of honeycombs from moth damage. Swiss Bee Research Center Federal Dairy Research Station, Communication, Nr. 24.Google Scholar
  7. 7.
    Cochran, D. G. (1995) Toxic effects of boric acid on the German cockroach. Experientia 51, 561–563.CrossRefGoogle Scholar
  8. 8.
    Godlewski, J., K⌈udkiewicz, B., Grzelak, K., Cymborowski, B. (2001) Expression of larval hemolymph proteins (Lhp) genes and protein synthesis in the fat body of greater wax mot. (Galleria mellonella) larvae during diapause. J. Insect Physiol. 47, 759–766.CrossRefGoogle Scholar
  9. 9.
    Gore, J. C., Schal, C. (2004) Laboratory evaluation of boric acid-sugar solutions as baits for management of German cockroach infestiations. J. Econ. Entomol. 97, 581–587.CrossRefGoogle Scholar
  10. 10.
    Gore, J. C., Zurek, L., Santangelo, R. G., Stringham, S. M., Watson, D. W., Schal, C. (2004) Water solutions of boric acid and sugar for management of german cockroach populations in livestock production system. J. Econ. Entomol. 97, 715–720.CrossRefGoogle Scholar
  11. 11.
    Guedes, R. N. C., Oliveira, E. E., Guedes, N. M. P., Ribeiro, B., Serrão, J. E. (2006) Cost and mitigation of insecticide resistance in the maize weevil. Sitophilus zeamais. Physiol. Entomol. 31, 30–38.CrossRefGoogle Scholar
  12. 12.
    Habes, D., Morakchi, S., Aribi, N., Farine, J.-P., Soltani, N. (2006) Boric acid toxicity to the German cockroach. Blattella germanica: Alterations in midgut structure, and acetylcholinestrease and glutathione S-transferase activity. Pestic. Biochem. Physiol. 84, 17–24.CrossRefGoogle Scholar
  13. 13.
    Halliwell, B., Gutteridge, J. M. C. (1999) Free Radical in Biology and Medicine. Third ed. Oxford University Press, Oxford.Google Scholar
  14. 14.
    Halwani, A. E., Niven, D. F., Dunphy, G. B. (2001) Apolipophorin-III in the greater wax moth. Galleria mellonella (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 48, 135–143.CrossRefGoogle Scholar
  15. 15.
    Hyršl, P., Büyükgüzel, E., Büyükgüzel, K. (2007) The effects of boric acid-induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Arch. Insect Biochem. Physiol. 66, 23–31.CrossRefGoogle Scholar
  16. 16.
    Hyršl, P., Šimek, V. (2005) An analysis of hemolymph protein profiles during the final instar, prepupa and pupa of the silkworm Bombyx mori (Lepidoptera, Bombycidae). Biologia 60, 207–213.Google Scholar
  17. 17.
    I˙çen, E., Armutçu, F., Büyükgüzel, K., Gürel, A. (2005) Biochemical stress indicators of greater wax moth Galleria mellonella L. exposure to organophosphorus insecticides. J. Econ. Entomol. 98, 358–366. mot. Galleria mellonella L. exposure to organophosphorus insecticides. J. Econ. Entomol. 98, 358–366CrossRefGoogle Scholar
  18. 18.
    Kirkeby, S., Moe, D., Bog-Hansen, T. C. (1993) The silver staining procedure of sodium dodecyl sulphate-gels may be accelerated by shortening fixation time. Electrophoresis 14, 51–55.CrossRefGoogle Scholar
  19. 19.
    Krishnan, N., Sehnal, F. (2006) Compartmentalization of oxidative stress and antioxidant defense in the larval gut o. Spodoptera littoralis. Arch. Insect Biochem. Physiol. 63, 1–10.CrossRefGoogle Scholar
  20. 20.
    Krishnan, N., Kodrik, D., Turanli, F., Sehnal, F. (2007) Stage specific distribution of oxidative radicals and antioxidant enzymes in the midgut o. Leptinotarsa decemlineata. J. Insect Physiol. 53, 67–74.CrossRefGoogle Scholar
  21. 21.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.CrossRefGoogle Scholar
  22. 22.
    Marshak, D. R., Kadonaga, J. T., Burgess, R. R., Kunth, M. W., Brennan, W. A. Jr., Lin, S. H. (1993) Strategies for Protein Purification and Characterization, a Laboratory Course Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  23. 23.
    Miller, S. G., Silhacek, D. L. (1982) The synthesis and uptake of heamolymph storage proteins by the fat body of the greater wax mot. Galleria mellonella (L.). Insect Biochem. 12, 293–300.CrossRefGoogle Scholar
  24. 24.
    Miller, S. G., Silhacek, D. L. (1982) Identification and purification of storage proteins in tissues of the greater wax mot. Galleria mellonella (L.). Insect Biochem. 12, 277–292.CrossRefGoogle Scholar
  25. 25.
    Miota, F., Siegfried, B. D., Scharf, M. E., Lydy, M. L (2000) Atrazine induction of P-450 i. Chironomus tentans larvae. Chemosphere 40, 285–291.CrossRefGoogle Scholar
  26. 26.
    Nath, B. S., Suresh, A., Varma, B. M., Kumar, R. P. S. (1997) Changes in protein metabolism in hemolymph and fat body of the silkworm. Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Ecotoxicol. Environ. Saf. 36, 169–173.CrossRefGoogle Scholar
  27. 27.
    Neoliya, N. K., Singh, D., Sangawan, R. (2005) Azadiractin influences total head protein content o. Helicoverpa armigera Hub. larvae. Current Science 88, 1889–1990.Google Scholar
  28. 28.
    Park, J. H., Keeley, L. L. (1998) The effect of biogenic amines and their analogs on carbohydrate metabolism in the fat body of the cockroac. Blaberus discoidalis. Gen. Comp. Endocrinol. 110, 88–95.CrossRefGoogle Scholar
  29. 29.
    Philip, G., Rajasree, B. (1996) Action of Cypermethrin on tissue transaminations during nitrogen metabolisms i. Cyprinus carpio. Ecotoxicol. Environ. Saf. 34, 174–180.CrossRefGoogle Scholar
  30. 30.
    Scharf, M. E., Siegfried, B. D., Meinke L. I., Wright, R. I., Chandler, L. D. (2000) Cytochrome P450-mediated N-demethylation activity and induction in insecticide-resistant and susceptible western corn rootworm populations (Coleoptera: Chrysomelidae). Pestic. Biochem. Physiol. 67, 137–143.CrossRefGoogle Scholar
  31. 31.
    van der Horst, D. J., Vroemen, S. F., van Marrewijk, W. J. A. (1997) Metabolism of stored reserves in insect fat body: hormonal signal transduction implicated in glycogen mobilization and biosynthesis of the lipophorin system. Comp. Biochem. Physiol. 117B, 463–474.CrossRefGoogle Scholar
  32. 32.
    Wiesner, A., Losen, S., Kopacek, P., Weise, C., Götz, P. (1997) Isolated apolipophorin III fro. Galleria mellonella stimulates the immune reactions of this insect. J. Insect Physiol. 43, 383–391.CrossRefGoogle Scholar
  33. 33.
    Zurek, L., Gore, J. C., Stringham, M. S., Watson, D. W., Waldvogel, M. G., Schal, C. (2003) Boric acid dust as a component of an integrated cockroach management program in confined swine production. J. Econ. Entomol. 96, 1362–1366.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Hyršl
    • 1
    Email author
  • Ender Büyükgüzel
    • 2
  • K. Büyükgüzel
    • 2
  1. 1.Department of Animal Physiology and Immunology, Institute of Experimental BiologyFaculty of Science, Masaryk UniversityBrnoCzech Republic
  2. 2.Department of Biology, Faculty of Arts and ScienceKaraelmas UniversityZonguldakTurkey

Personalised recommendations