Selection of Salt Tolerant Plants of Nicotiana Tabacum L. Through in vitro and its Biochemical Characterization


Sodium chloride tolerant organogenic callus lines of Nicotiana tabacum were developed in vitro on Murashige and Skoog [16] medium supplemented with BA, IAA and different concentration of NaCl. The maximum shoot bud regeneration was achieved from both tolerant and non-tolerant calluses on MS medium supplemented with 1.0 mg/1 BA, 0.1 mg/1 IAA with or without NaCl within 4 weeks of culture. Standard growth parameters such as fresh weight and dry weight of organogenic callus, growth tolerant index and enzyme activity (peroxidase and catalase) were used as indicators of salt tolerance. The growth tolerance index in the 4-week after the beginning of treatments yielded significant differences among the non-tolerant and tolerant organogenic callus lines. The regenerated shoots were rooted on half-strength MS basal salts supplemented with 2% sucrose but devoid of growth regulator. The regenerated plants from tolerant callus lines were capable of growing in vitro in presence of 175 niM NaCl. SDS-PAGE profile showed that the progenies derived from tolerant sources were tolerant to salt. This investigation may help in the selection and characterization of salt tolerance in plant improvement programme.


  1. 1.

    Ashraf M. (1994) Organic substances responsible for salt tolerance in Eruca sattva. Biol. Plant. 36, 255–259.

    CAS  Article  Google Scholar 

  2. 2.

    Ashraf M. (2002) Salt tolerance of cotton: some new advances. Crit. Rev. Plant Sci. 21, 1–30.

    CAS  Article  Google Scholar 

  3. 3.

    Ashraf M., Tufail M. (1995) Variation in salinity tolerance in sunflower (Helianthus annus L.). J. Agronom. Soil Sci. 174, 351–362.

    CAS  Google Scholar 

  4. 4.

    Ashraf M., Harris P. J. C. (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3–16.

    CAS  Article  Google Scholar 

  5. 5.

    Basu S., Gangopadhyay G., Mukherjee B. B., Gupta S. (1997) Plant regeneration of salt adapted callus of indicarice (var. Basumati 370) in saline conditions. Plant Cell Tiss. Org. Cult. 50, 153–159.

    CAS  Article  Google Scholar 

  6. 6.

    Binh D. Q., Heszky L. E., Gyulai G., Csillag A. (1992) Plant regeneration of NaCl-pretreated cells from long term suspension culture of rice (Oryza sativa L.) in high saline conditions. Plant Cell Tiss. Org. Cult. 29, 75–82.

    Article  Google Scholar 

  7. 7.

    Cushman, J. C., De Rocher E. J., Bohnert H. J. (1990) Gene expression during adaptation to salt stress. In: Katterman F. (ed.) Environmental Injury to Plants. Academic Press, San Diego, USA, pp. 173–203.

    Google Scholar 

  8. 8.

    Hasegawa P. M., Bressan, R. A., Handa A. K. (1980) Growth characteristics of NaCl selected and non-selected cells of Nicotiana tabacum. Plant Cell Physiol. 21, 1347–1355.

    CAS  Article  Google Scholar 

  9. 9.

    Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J. (2000) Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51, 463–499.

    CAS  Article  Google Scholar 

  10. 10.

    Heszky L. E., Li S. N., Horvath Z. S. (1986) Rice tissue culture and application to breeding.II. Factors affecting the plant regeneration during subculture of diploid and haploid callus. Cereal Res. Comm. 14, 289–296.

    Google Scholar 

  11. 11.

    Hurkman W. J., Fomari C. S., Tanaka C. K. (1989) A comparison of the effect of salt on polypeptide and translatable mRNA in roots of a salt tolerant and salt sensitive cultivar of barley. Plant Physiol. 90, 1444–1456.

    CAS  Article  Google Scholar 

  12. 12.

    Iyengar E. R. R., Reddy M. P. (1996) Photosynthesis in high salt tolerant plants. In: Pesserkali M. (ed.) Hand Book of Photosynthesis. Marshal Dekker, Baton Rouge, LA, USA, pp. 56–65.

    Google Scholar 

  13. 13.

    Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. (1951) Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  14. 14.

    Lutts S., Kinet J. M., Bouharmont J. (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sati L.) cultivars differing in salinity tolerance. Plant Growth Regul. 19, 207–218.

    CAS  Article  Google Scholar 

  15. 15.

    Marascuilo L. A., McSweeney M. (1977) Non-parametric and distribution free methods for the Social Sciences. Books/Cole Publ. Co., California, USA, pp. 141–147.

    Google Scholar 

  16. 16.

    Murashige T., Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    CAS  Article  Google Scholar 

  17. 17.

    Noble C. L., Halloran G. M., West D. W. (1984) Identification and selection for salt tolerance in lecerne (Medicago sativa L.). Aust. J. Agric. Res. 35, 239–252.

    Article  Google Scholar 

  18. 18.

    Noble C. L., Rogers M. E. (1992) Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil. 146, 99–107.

    CAS  Article  Google Scholar 

  19. 19.

    Parida A., Das A. B. (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicology andEnviron. Safety 60, 324–349.

    CAS  Article  Google Scholar 

  20. 20.

    Parida A., Das A. B., Das P. (2002) NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic compounds in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol. 45, 28–36.

    CAS  Article  Google Scholar 

  21. 21.

    Reddy P. J., Vaidyanath K. (1986) In vitro characterization of salt stress effects and the selection of salt tolerant plants in rice (Oryza sativa L.). Theor Appl. Genet. 71, 757–760.

    Article  Google Scholar 

  22. 22.

    Shannon M. C. (1998) Adaptation of plants to salinity. Adv. Agron. 60, 75–119.

    Article  Google Scholar 

  23. 23.

    Shah S. H., Wainwright S. J., Merett M. J. (1993) Cation co-tolerance in callus cultures of Medicago sativa L. tolerant to sodium chloride. Plant Sci. 89, 81–84.

    CAS  Article  Google Scholar 

  24. 24.

    Tal M. (1983) Selection of stress tolerance. In: Evans D. A., Sharp W. R., Ammirato P. V., Yamada Y. (eds) Handbook of Plant Cell Culture. Vol. 1. MacMillan Inc., New York, USA, pp. 461–488.

    Google Scholar 

  25. 25.

    Uma S., Prasad T. G., Kumar M. U. (1995) Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet. Ann. Bot. 76, 43–49.

    CAS  Article  Google Scholar 

  26. 26.

    Vernon L. P. (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal. Chem. 32, 1144–1150.

    CAS  Article  Google Scholar 

  27. 27.

    Watad A. A., Reinhold L., Lernes M. (1983) Comparison between a stable NaCl-selected Nicotiana cell line and wild type. Plant Physiol. 73, 629–642.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. R. Rout.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Rout, G.R., Senapati, S.K. & Panda, J.J. Selection of Salt Tolerant Plants of Nicotiana Tabacum L. Through in vitro and its Biochemical Characterization. BIOLOGIA FUTURA 59, 77–92 (2008).

Download citation


  • Enzyme activity
  • In vitro culture
  • N. tabacum
  • salt tolerance