Acetylcholinesterase, Catalase and Glutathione S-Transferase Activity in Beet Armyworm (Spodoptera Exigua) Exposed to Nickel and/or Diazinon
Abstract
The effect of single and combined action of nickel and pesticide (diazinon) on enzymes activity (glutathione S-transferase, catalase and acetylcholinesterase) in the digestive tract, body wall and fat body as well as basic growth parameters (life span and body mass) of Spodoptera exigua were investigated under laboratory conditions. The experiment was carried out on two nickel treated groups [300 (Nil) and 900 (Nill) mg Ni · kg-1 dry weight of the culture medium] and a control group. The results showed that mortality of caterpillars in Nill group was higher (51.1%) when compare with the controls. The body mass of the caterpillars in the Nil group was higher by 20% than in the control group, and the body mass of the pupae in the Nill group was lower by 22% than in the control group. Exposure to nickel influenced AChE, GST and catalase activity in the body wall (increase up to 66%) and GI tract, while in the fat body the above-mentioned activity remained unchanged. The pesticide application caused a strong, about 70% reduction in AChE activity in GI tract, while in case of GST activity pesticide treatment resulted in multidirectional response depending on the organ. Nickel pre-treatment affects the susceptibility to pesticide, which is manifested in a lower activity of GST and catalase in the fat body (from 26 to 36%), when compare with the other experimental groups.
Keywords
Catalase acetylcholinesterase glutathione S-transferase development nickel Spodoptera exiguaPreview
Unable to display preview. Download preview PDF.
References
- 1.Aebi H. (1984) Catalase in vitro. Methods Enzymol. 105, 212–226.Google Scholar
- 2.Ahmad S. (1995) Oxidative stress from environmental pollutants. Arch. Insect Bioch. Physiol. 29, 135–157.CrossRefGoogle Scholar
- 3.Augustyniak M., Babczynska A., Migula R., Wilczek G., Laszczyca P., Kafel A., Augustyniak M. (2005) Joint effects of dimethoate and heavy metals on metabolic responses in a grasshopper (Chorthippus brunneus) from a heavy metals pollution gradient. Comp. Biochem. Physiol. C 141, 412–419.Google Scholar
- 4.Augustyniak M., Migula P. (2000) Body burden with metals and detoxifying abilities of the grasshopper - Chorthippus brunneus (Thunberg) from industrially polluted areas. In: Markert B., Friese K. (eds) Trace Elements - Their Distribution and Effects in the Environment. Elsevier Science Ltd., Berlin, Amsterdam, pp. 423–454.CrossRefGoogle Scholar
- 5.Augustyniak M., Migula P., Mesjasz-Przybylowicz J., Tarnawska M., Nakonieczny M., Babczynska A., Przybylowicz W. (2005) Effects of organophosphorus pesticide to beetle (Chrysolinapardalina) feeding on nickel hyperaccumulating plant (Berkheya coddii). Abstract Book of the SETAC Europe 15th Annual Meeting, May 22–26 2005, Lille, France, p. 230.Google Scholar
- 6.Babczynska A., Migula P. (2002) Cadmium-fenitrothion interaction in the spider Pardosa lugubris and the fruit fly Drosophila melanogaster Bull. Environ. Contam. Toxicol. 69, 586–592.CrossRefGoogle Scholar
- 7.Bocquene G., Galgani, F., Truquet P. (1990) Characterization and assay for use of AChE activity for several marine species in pollution monitoring. Mar. Environ. Res. 30, 75–89.CrossRefGoogle Scholar
- 8.Booth L. H., Hodge S., O’Halloran K. (2000) Use of cholinesterase in Aporrectodea caliginosa (Oligochaeta; Lumbricidae) to detect organophosphate contamination: comparison of laboratory tests, mesocosms and field studies. Environ. Toxicol. Chem. 19, 417–422.CrossRefGoogle Scholar
- 9.Boyd R. S., Martens S. N. (1994) Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70, 21–25.CrossRefGoogle Scholar
- 10.Boyd R. S., Moar W. J. (1999) The defensive function of Ni in plants: response of the polyphagous herbivore Spodoptera exigua (Lepidoptera: Noctuidae) to hyperaccumulator and accumulator species of Streptanthus (Brassicaceae). Oecologia 118, 218–224.CrossRefGoogle Scholar
- 11.Bradford M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analyt. Biochem. 72, 248–254.CrossRefGoogle Scholar
- 12.Dauberschmidt C., Dietrich D. R., Schlatter C. (1997) Esterases in the zebra mussel Dreissena poly-morpha: activities, inhibition and bindidng to organophosphates. Aquat. Toxicol. 37, 295–305.CrossRefGoogle Scholar
- 13.Dellali M., Gnassia-Barelli M., Romeo M., Aissa P. (2001) The use of acetylcholinesterase activity in Ruditapes decussatus and Mytilus galloprovincialis in the biomonitoring of Bizerta lagoon. Comp. Biochem. Physiol. C 130, 227–235.CrossRefGoogle Scholar
- 14.Egaas E., Svendsen N. O., Kobro S., Skaare J. U. (1992) Glutathione S-transferases in endosulfan-treated red sword grass moth (Xylena vetusta Hb.) and hebrew character moth (Orthosia gothica L.) reared on leaves from apple (Malus domestica Cult.) or willow (Salix caprea L.). Comp. Biochem. Physiol. C 110, 143–150.CrossRefGoogle Scholar
- 15.Enayati A. A., Ranson H., Hemingway J. (2005) Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14, 3–8.CrossRefGoogle Scholar
- 16.Eisler R. (2000) Handbook of Chemical Risk Assessment. Health Hazards to Humans, Plants and Animals. Vol. I. Metals. Lewis Publishers, Boca Raton, London, New York, Washington DC.Google Scholar
- 17.Hansen L. O., Zenthner O. (1978) Techniques for rearing 26 species of Noctuidae (Lepidoptera) on an artificial diet. Yearbook, Royal Vet. and Agricult. Univ., Frederiksberg, Denmark, pp. 84–97.Google Scholar
- 18.Hayes J. D., Flanagan J. U., Jowsey I. R. (2005) Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45, 51–88.CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Heliovaara K., Vaisanen R. (1989) Between-species differences in heavy metal levels in four pine diprionids (Hymenoptera) along an air pollutant gradient. Environ. Pollut. 62, 253–261.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Honsi T. G., Hoel L., Stenersen J. V. (1999) Non-inducibility of antioxidant enzymes in the earthworms Eisenia veneta and E. fetida after exposure to heavy metals and paraquat. Pedobiologia 43, 652–657.Google Scholar
- 21.Hughes P. R., Weinstein L. H., Wettlaufer S. H., Chiment J. J., Doss G. J., Culliney T. W., Gutenmann W. H., Bache C. A., Lisk D. J. (1987) Effect of fertilization with municipal sludge on the glutathione, polyamine and cadmium content of cole crops and associated loopers (Trichoplusia ni). J. Agric. Food Chem. 35, 50–54.CrossRefGoogle Scholar
- 22.Kaaya A., Najimi S., Ribera D., Narbonne J. F., Moukrim A. (1999) Characterization of glutathione S-transferases (GST) activities in Perna perna and Mytilus galloprovincialis used as a bio-marker of pollution in the Agadir Marine Bay (South of Morocco). Bull. Environ. Contam. Toxicol. 62, 623–629.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Kawanishi S., Inoue S., Yamamoto K. (1994) Active oxygen species in DNA damage induced by carcinogenic metal compounds. Environ. Health Perspect. 102, 17–20.PubMedPubMedCentralGoogle Scholar
- 24.Kirby M. L., Ottea J. A. (1995) Multiple mechanisms for enhancement of glutathione S-transferase activities in Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Biochem. Molec. Biol. 25, 347–353.CrossRefGoogle Scholar
- 25.Kozlov, M. V., Haukioja E., Kovnatsky E. F. (2000) Uptake and excretion of nickel and copper by leaf-mining larvae of Eriocrania semipurpurella (Lepidoptera: Eriocraniidae) feeding on contaminated birch foliage. Environ. Pollut. 108, 303–310.CrossRefGoogle Scholar
- 26.Lagadic L. (1999) Biomarkers in invertebrates. Evaluation the effects of chemicals on populations and communities from biochemical and physiological changes in individuals. In: Peakal D. B., Walker C. H., Migula P. (eds) Biomarkers: A Pragmatic Basis for Remediation of Severe Pollution in Eastern Europe. Kluwer Academic Publ., Dordrecht, Boston, London, pp. 153–175.CrossRefGoogle Scholar
- 27.Larsen K. J., Litsch A. L., Brewer S. R., Taylor D. H. (1994) Contrasting effects of sewage sludge and commercial fertilizer on egg to adult development of two herbivorous insect species. Ecotoxicology 3, 94–109.CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Lock K., Jansen C. R. (2002) Ecotoxicity of nickel to Eisenia fetida, Enchytraeus albidus and Folsomia Candida. Chemosphere 46, 197–200.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Martens S. N., Boyd R. S. (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98, 379–384.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Migula P., Augustyniak M., Laszczyca P., Wilczek G. (1999) Validation of selected biomarkers in invertebrates from the polluted silesian region. In: Peakall D. B., Walker C. H., Migula P. (eds) Biomarkers: A Pragmatic Basis for Remediation of Severe Pollution in Eastern Europe. Nato Science Series 2. Environmental Security, 54, 75–90.Google Scholar
- 31.Nijhout H. F. (1975) A threshold size for metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biol. Bull. 149, 214–225.CrossRefGoogle Scholar
- 32.Novelli E. L., Rodriguee N. L., Ribas B. O. (1995) Superoxide radical and toxicity of environmental nickel exposure. Human Exp. Toxicol. 14, 248–251.CrossRefGoogle Scholar
- 33.O’Halloran K., Booth L. H., Hodge S., Thomsen S., Wratten S. D. (1999) Biomarker responses of the earthworm Aporrectodea calliginosa to organophosphates: Hierarchical tests. Pedobiologia 43, 646–651.Google Scholar
- 34.Scaps P., Demuynck S., Descamps M., Dhainaut A. (1997) Effects of organophosphate and carbamate pesticides on acetylcholinesterase and choline acetyltransferase activities of the polychaete Nereis diversicolor. Arch. Environ. Contain. Toxicol. 33, 203–208.CrossRefGoogle Scholar
- 35.Steevens J. A., Benson W. H. (1999) Toxicological interactions of chlorpyrifos and methyl mercury in the amphipod Hyalella azteca. Toxicol Sci. 52, 168–177.CrossRefGoogle Scholar
- 36.Thaker A. A., Hariots A. A. (1989) Cadmium bioaccumulation and effects on soluble peptides, proteins and enzymes in the hepatopancreas of the shrimp Callianassa tyrrhena. Comp. Biochem. Physiol. C 94, 63–70.CrossRefGoogle Scholar
- 37.Weirich G. F., Collins A. M., Williams V. P. (2002) Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33, 3–14.CrossRefGoogle Scholar
- 38.Wilczek G. (2005) Apoptosis and biochemical biomarkers of stress in spiders from industrially polluted areas exposed to high temperature and dimethoate. Comp. Biochem. Physiol. 141 C, 194–206.Google Scholar
- 39.Wilczek G., Migula P. (1996) Metal body burdens and detoxifying enzymes in spiders from industrially polluted areas. Fresenius J. Anal. Chem. 354, 643–647.Google Scholar
- 40.Yu S. J. (1982) Host plant induction of glutathione S-transferase in the fall armyworm. Pestic. Biochem. Physiol. 18, 101–106.CrossRefGoogle Scholar
- 41.Yu S. J. (1989) Purification and characterization of glutathione transferases from five phytophagous lepidoptera. Pestic. Biochem. Physiol. 19, 330–336.CrossRefGoogle Scholar
- 42.Yu S. J. (1999) Induction of new glutathione S-transferase isozymes by allelochemicals in the fall armyworm. Pestic. Biochem. Physiol. 63, 163–171.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.