Advertisement

Acta Biologica Hungarica

, Volume 58, Issue 4, pp 359–367 | Cite as

In vitro Effects of Alloxan/Copper Combinations on Lipid Peroxidation, Protein Oxidation and Antioxidant Enzymes

  • Albena AlexandrovaEmail author
  • L. Petrov
  • Mila Kessiova
  • Margarita Kirkova
Article

Abstract

The in vitro effects of alloxan and the product of its reduction dialuric acid (alone or in combination with copper ions) on lipid peroxidation, carbonyl content, GSH level and antioxidant enzyme activities in rat liver and kidney have been studied. The effects of Cu2+/alloxan and Cu2+/dialuric acid were compared with those of Fe3+/alloxan and Fe3+/dialuric acid. Unlike alloxan, dialuric acid increased liver and kidney lipid peroxidation; similar effects were registered in the presence of Fe3+. In the presence of Cu2+/dialuric acid, the lipid peroxidation was strongly inhibited and vice versa - the liver protein oxidation was increased. Alloxan and dialuric acid, as well as their combinations with Fe3+ had no effect on the total GSH level. Both substances did not affect the Cu2+-induced changes in GSH level, glucose-6-phosphate dehydrogenase and gluthatione reductase activities. In contrast, Cu2+ had no effect on dialuric-acid induced changes in gluthatione peroxidase and superoxide dismutase activities. The present in vitro results, concerning the metal dependence of the effects of alloxan and dialuric acid, are a premise for in vivo study of alloxan effects in metal-loaded animals.

Keywords

Alloxan dialuric acid copper lipid peroxidation antioxidant enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This study was supported by Grant MU-B-1001 from the National Research Fund, Bulgaria.

References

  1. 1.
    Alexandrova, A., Georgieva, A., Kirkova, M. (2006) Alloxan and dialuric acid. Effects on.OH-provoked degradation of deoxyribose in the presence of different metal ions. C.R. Acad. Bulg. Sci. 59, 305–312.Google Scholar
  2. 2.
    Alexandrova, A., Kessiova, M., Tsvetanova, E., Kirkova, M. (2006) Alloxan. Effects on O2--provoked inhibition of nitro-blue tetrazolium reduction in the presence of different metal ions. C.R. Acad. Bulg. Sci. 59, 201–206.Google Scholar
  3. 3.
    Alexandrova, A., Kirkova, M., Russanov, E. (1998) In vitro effects of alloxan-vanadium combination on lipid peroxidation and on antioxidant enzyme activity. Gen. Pharmac. 31, 489–493.CrossRefGoogle Scholar
  4. 4.
    Beauchamp, C., Fridovich, I. (1971) Superoxide dismutase: Improved assays and assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287.CrossRefGoogle Scholar
  5. 5.
    Becker, D. J., Reul, B., Ozcelikay, A. T., Buchet, J. P., Henquin, J. C., Brichard, S. M. (1996) Oral selenates improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenesis enzymes in diabetic rats. Diabetologia 39, 3–11.CrossRefGoogle Scholar
  6. 6.
    Cartier, P., Leroux, J. P., Marchand, J. Cl. (1967) Techniques de dosage des enzymes glycocytiques tissulaires. Ann. Biol. Clin. 25, 109–136.Google Scholar
  7. 7.
    Fischer, L. J., Harman, A. W. (1982) Oxygen free radicals and diabetogenic action of alloxan. In: Autor, A. P. (ed.) Pathology of Oxygen. Academic Press, New York. p. 261.Google Scholar
  8. 8.
    Grankvist, K., Marklund, S. L., Schlin, J., Taljedal, I. B. (1979) Superoxide dismutase, catalase and scavengers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochem. J. 182, 17–25.CrossRefGoogle Scholar
  9. 9.
    Gunzler, W. A., Vergin, H., Muller, I., Flohe, L. (1972) Glutathion peroxidase. VI. Die reaction der glutathion peroxidase mit Verschieden hydroperoxiden. Hoppe-Seyler’s Z. Physiol. Chem. 353, 1001–1004.CrossRefGoogle Scholar
  10. 10.
    Halliwell, B., Gutteridge, J. M. C. (1985) Free Radicals in Biology and Medicine. Calderon Press, Oxford.Google Scholar
  11. 11.
    Halliwell, B., Gutteridge, J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14.CrossRefGoogle Scholar
  12. 12.
    Halliwell, B., Gutteridge, J. M. C., Aruoma, O. I. (1987) The deoxyribose method: a simple “test-tube” assay for determination of free constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 215–219.CrossRefGoogle Scholar
  13. 13.
    Heikkila, R. E., Winston, B., Cohen, G., Barden, H. (1976) Alloxan-induced diabetes: evidence for hydrohyl radical as a cytotoxic intermediate. Biochem. Pharmac. 25, 1085–1092.CrossRefGoogle Scholar
  14. 14.
    Houee-Levin, C., Gardes-Albert, M., Ferradini, C., Pucheault, J. (1981) Radiolysis study of the allox-an-dialuric acid couple II: the autooxidation of dialuric acid. Radiat. Res. 88, 20–28.CrossRefGoogle Scholar
  15. 15.
    Hunter, F., Gebinski, J., Hoffstein, P., Weinstein, J., Scott, A. (1963) Swelling and lysis of rat liver mitochondria by ferrous ions. J. Biol. Chem. 238, 828–835.PubMedGoogle Scholar
  16. 16.
    Ishibashi, F., Howard, B. V. (1981) Alloxan and H2O2 action on glucose metabolisis in cultured fibroblasts. Generation of oxygen-containing free radicals as a mechanism of alloxan action. J. Biol. Chem. 256, 12134–12139.PubMedGoogle Scholar
  17. 17.
    Kirkova, M., Karakashev, P., Russanov, E. (1998) Hydroxyl radicals production in the vanadium ions/dialuric acid systems. Gen. Pharmac. 31, 247–251.CrossRefGoogle Scholar
  18. 18.
    Letelier, M. E., Lepe, A. M., Faundez, M., Salazar, J., Marin, R., Aracena, P., Speiski, H. (2005) Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem. Biol. Interact. 151, 71–82.CrossRefGoogle Scholar
  19. 19.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randal, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–278.Google Scholar
  20. 20.
    Malaisse, W. J. (1982) Alloxan toxicity to the pancreatic β-cell. A new hypothesis. Biochem. Pharmac. 31, 3527–3534.CrossRefGoogle Scholar
  21. 21.
    McNeill, J. H., Delgatty, H. L. M., Battell, M. L. (1991) Insulin-like effects of sodium selenate in streptozotocin induced diabetic rats. Diabetes 40, 1675–1678.CrossRefGoogle Scholar
  22. 22.
    Meyerovitch, J., Farfel, Z., Sack, J., Schechter, Y. (1987) Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. J. Biol. Chem. 262, 6658–6662.PubMedGoogle Scholar
  23. 23.
    Miller, D. M., Grover, A., Nayini, N., Aust, S. D. (1993) Xanthine oxidase- and iron-dependent lipid peroxidation. Arch. Biochem. Biophys. 301, 1–7.CrossRefGoogle Scholar
  24. 24.
    Munday, R. (1988) Effects of transition metals on the reaction rate and on the generation of “active oxygen” species. Biochem. Pharmac. 37, 409–413.CrossRefGoogle Scholar
  25. 25.
    Ozcelikay, A. T., Becker, D. J., Ongemba, L. N., Pottier, A. M., Henquin, J. L., Buchard, S. M. (1996) Improvement of glucose and lipid metabolism in diabetic rats treated with molybdate. Am. J. Physiol. 270, E344-E352.Google Scholar
  26. 26.
    Pinto, R. E., Bartley, W. (1969) The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem. J. 112, 109–115.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Reznick, A. Z., Parker, L. (1994) Oxidative damage to ptoteins: Spectrophotometric method for carbonyl assay. Meth. Enzymol. 233, 357–363.CrossRefGoogle Scholar
  28. 28.
    Rodriguez-Gil, J. E., Fernandez-Novell, J. M., Barbera, A., Guinovart, J. J. (2000) Lithium effects on rat glucose metabolism in vivo. Arch. Biochem. Biophys. 375, 377–384.CrossRefGoogle Scholar
  29. 29.
    Schechter, Y. (1990) Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 39, 1–5.CrossRefGoogle Scholar
  30. 30.
    Stadtman, E. R., Oliver, C. N. (1991) Metal-catalyzed oxidation of proteins. J. Biol. Chem. 266, 2005–2008.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Tamura, S., Brown, T. A., Whipple, J. H., Fujita-Yamaguchi, Y., Dubler, R. E., Cheng, K., Larner, J. W. (1984) A novel mechanism for the insulin-like effects of vanadate on glycogen synthase rat adipocytes. J. Biol. Chem. 259, 6650–6658.PubMedGoogle Scholar
  32. 32.
    Tibaldi, J., Benjamin, J., Cabbat, F. S., Heikkila, R. E. (1979) Protection against alloxan-induced diabetes by various urea derivatives: relationship between protective effects and reactivity with the hydroxyl radical. J. Pharmac. Exp. Ther. 211, 415–418.Google Scholar
  33. 33.
    Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 27, 502–522.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Albena Alexandrova
    • 1
    Email author
  • L. Petrov
    • 1
  • Mila Kessiova
    • 1
  • Margarita Kirkova
    • 1
  1. 1.Institute of PhysiologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations