Advertisement

Acta Biologica Hungarica

, Volume 58, Issue 3, pp 281–286 | Cite as

Extreme Consumption of Beta vulgaris var. rubra Can Cause Metal Ion Accumulation in the Liver

  • Anna BlázovicsEmail author
  • Éva Sárdi
  • Klára Szentmihályi
  • L. Váli
  • Mária Takács-Hájos
  • Éva Stefanovits-Bányai
Article

Abstract

Redox homeostasis can be considered as the cumulative action of all free radical reactions and antioxidant defences in different tissues, which provide suitable conditions for life. Transition metal ions are ubiquitous in biological systems. Beta vulgaris var. rubra (table beet root) contains several bioactive agents (e.g. betain, betanin, vulgaxanthine, polyphenols, folic acid) and different metal elements (e.g. Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Zn), which act on the various physiological routes. Therefore we studied the effect of this metal rich vegetable on element content of the liver in healthy rats. Male Wistar rats (n = 7) (200 ± 20 g) were treated with lyophilised powder of table beet root (2 g/kg b.w.) added into the rat chow for 10 days. Five healthy animals served as control. We found significant accumulation of Cu, Fe, Mg, Mn, Zn and P in the liver, which was proved by ICP-AES measurements. We suppose that the extreme consumption of table beet root can cause several disturbances not only in cases of healthy patients but, e.g. in patients suffering with metal accumulating diseases, e.g. porphyria cutanea tarda, haemochromatosis or Wilson disease-although moderate consumption may be beneficial in iron-deficiency anaemia and inflammatory bowel diseases.

Keywords

Beta vulgaris var. rubra element accumulation redox homeostasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The study was supported by ETT 002/2003, NKFP 1B/047/2004 and NKFP 1A/005/2004 projects. The authors wish to thank Edina Pintér and Sarolta Bárkovits for their excellent technical assistance.

References

  1. 1.
    AOAC Official Methods of Analysis. 1984. (14th ed.) Arlington, USA, 28054 B.Google Scholar
  2. 2.
    Blázovics, A., Kovács, Á., Lugasi, A., Hagymási, K., Bíró, L., Fehér, J. (1999) Antioxidant defence in erythrocytes and plasma of patients with active and quiescent Crohn’s disease and ulcerative colitis: A chemiluminescent study. Clin. Chem. 45, 895–896.PubMedGoogle Scholar
  3. 3.
    Dinkova-Kostova, A. T., Holtzclaw, W. D., Wakabayashi, N. (2005) Keap1, the sensor for elec-trophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochem. 44, 6889–6899.CrossRefGoogle Scholar
  4. 4.
    Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T. (1988) Two new flavonoids and other constituents in licore root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36, 2090–2097.CrossRefGoogle Scholar
  5. 5.
    Kim, C. H., Kim, J. H., Lee, J., Ahn, Y. S. (2003) Zinc-induced NF-kappaB inhibition can be modulated by changes in the intracellular metallothionein level. Toxicol. Appl. Pharm. 190, 189–196.CrossRefGoogle Scholar
  6. 6.
    Kudrin, A. V. (2000) Trace elements in regulation of NF-κB activity. J. Trace Elem. Med. Biol. 14, 129–142.CrossRefGoogle Scholar
  7. 7.
    Lugasi, A., Blázovics, A. (2004) Az egészséges táplálkozás tudományos alapjai [Scientifical basis of healthy nutrition] (In Hungarian). PXP Nyomda, Budapest.Google Scholar
  8. 8.
    Lowry, A. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin-phenol reagents. J. Biol. Chem. 193, 265–275.Google Scholar
  9. 9.
    Meyer, M., Pahl, H. L., Baeuerle, P. A. (1994) Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chem. Biol. Interact. 91, 91–100.CrossRefGoogle Scholar
  10. 10.
    Oyaizu, M. (1986) Studies on products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44, 307–315.CrossRefGoogle Scholar
  11. 11.
    Powis, G., Gasdanska, J. R., Baker, A. (1997) Redox signaling and the control of cell growth and death. Adv. Pharmacol. 38, 329–358.CrossRefGoogle Scholar
  12. 12.
    Sárdi, É., Stefanovits-Bányai, É., Kocsis, I., Takács-Hájos, M., Fébel, H., Blázovics, A. (2006) Importance of selection of table beet species for physiological aspects. Acta Alim. Hung. (in press).Google Scholar
  13. 13.
    Schroeder, J. J., Cousins, R. J. (1990) Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures. Proc. Natl. Acad. Sci. USA. 87, 3137–3141.CrossRefGoogle Scholar
  14. 14.
    Sedlak, J., Lindsay, R. H. (1985) Estimation of total protein bound and non protein sulfhydryl groups in tissues with Ellmann’s reagent. Anal. Biochem. Biophys. 25, 192–205.Google Scholar
  15. 15.
    Szentmihályi, K., Blázovics, A., Lugasi, A., Kéry, Á., Lakatos, B., Vinkler, P. (2000) Effect of natural polyphenol-type antioxidants (Sempervivum tectorum and Raphanus sativus L. var. niger extracts) on metal ion concentrations in rat bile fluid. Curr. Top. Biophys. 24, 203–207.Google Scholar
  16. 16.
    Takács-Hájos, M. (1999) Colour components of different table beet root varieties. Int. J. Horticult. Sci. 5, 3–4.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Anna Blázovics
    • 1
    Email author
  • Éva Sárdi
    • 2
  • Klára Szentmihályi
    • 3
  • L. Váli
    • 1
  • Mária Takács-Hájos
    • 4
  • Éva Stefanovits-Bányai
    • 5
  1. 1.2nd Department of MedicineSemmelweis UniversityBudapestHungary
  2. 2.Department of Genetic and Horticultural Breeding, Faculty of Horticultural ScienceCorvinus University of BudapestBudapestHungary
  3. 3.Chemical Research CenterHungarian Academy of SciencesBudapestHungary
  4. 4.Department of Horticulture, Faculty of Agricultural Water and Environment ManagementTessedik S. CollegeSzarvasHungary
  5. 5.Department of Applied Chemistry, Faculty of Food ScienceCorvinus University of BudapestBudapestHungary

Personalised recommendations