Response of Inoculated Foliar Fed Pea Plants (Pisum sativum L.) to Reduced Mo Supply

Abstract

The application of nutrients to the roots and leaves of inoculated pea plants grown under conditions of reduced Mo supply was studied. Pea plants (Pisum sativum L.) were grown on liquid nutrient solution excluding Mo from the media until the 35th day under glasshouse conditions. Plants were inoculated with the bacterial suspension of Rhizobium leguminosarum Bv. Vicae, strain D293 at approximately 108 cells per cm3. The foliar fertilizer Agroleaf® was applied at 0.3% concentration. Changes in the root nodulation and the activities of the enzymes connected with nitrogen assimilation pathway (nitrate reductase - NR-NADH: EC 1.6.6.1; glutamine synthetase - GS: EC 6.3.1.2; glutamate synthase - NADH-GOGAT: EC 1.4.1.14 and nitrogenase - NG: EC 1.7.99.2) were observed. It was established that the foliar application of nutrients reduced the inhibitory effect on the root nodulation and nitrogen assimilatory enzyme activities due to the Mo shortage.

References

  1. 1.

    Atkins, C. A., Rainbird, R. M., Pate, J. S. (1980) Evidence for a purine pathway of ureide synthesis in N-2 fixing nodules of cowpea (Vigna unguiculata L. Walp.) and soybean (Glycine max L. Merr). Plant Physiol. 70, 55–60.

    Article  Google Scholar 

  2. 2.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 72, 248–254.

    CAS  Article  Google Scholar 

  3. 3.

    Campbell, W. H. (1999) Nitrate reductase structure, function and regulation. Binding the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 277–303.

    CAS  Article  Google Scholar 

  4. 4.

    Chen, F. L., Cullimore, J. V. (1988) Two isozymes of NADH-dependent glutamate synthase in root nodules of Phaseolus vulgaris L.: purification, properties and activity changes during nodule development. Plant Physiol. 88, 1411–1417.

    CAS  Article  Google Scholar 

  5. 5.

    Frechilla, S., Gonzalez, E. M., Royuela, M., Minchin, F. R., Aparicio-Tejo, P.M., Arrese-Igor, C. (2000) Source of nitrogen nutrition (nitrogen fixation or nitrate assimilation) is a major factor involved in pea response to moderate water stress. J. Plant Physiol. 157, 609–617.

    CAS  Article  Google Scholar 

  6. 6.

    Hageman, R. H., Reed, A. J. (1980) Nitrate reductase from higher plants. Method Enzymol. 69, 270–280.

    CAS  Article  Google Scholar 

  7. 7.

    Hardy, R. W. F., Burns, R. C., Holsten, R. D. (1973) Applications of the acetylene reduction assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5, 47–81.

    CAS  Article  Google Scholar 

  8. 8.

    Hristozkova, M., Stancheva, I., Geneva, M. (2005) Response of inoculated pea plants (Pisum sati-vum L.) to foliar fertilizer application with elevated concentrations. Ecol. Future 1, 14–17.

    Google Scholar 

  9. 9.

    Ireland, R. J. Lea, P. J. (1999) The enzymes of glutamine, glutamate, asparagines, and aspartate metabolism. In: Singh B. K. (ed.) Plant amino acids. Biochemistry and biotechnology. Marcel Dekker Inc., New York, pp. 49–109.

    Google Scholar 

  10. 10.

    Jongruaysup, S., Dell, B., Bell, R. W., O’Hara, G. W., Bradley, J. S. (1997) Effect of molybdenum and inorganic nitrogen on molybdenum redistribution in black gram (Vigna mungo L. Hepper) with particular reference to seed fill. Ann. Bot. 79, 67–74.

    CAS  Article  Google Scholar 

  11. 11.

    Kaiser, B. N., Gridley, K. L., Brady, J. N., Phillips, T., Tyerman, S. D. (2005) The role of molybdenum in agricultural plant production. Ann. Bot. 96, 745–754.

    CAS  Article  Google Scholar 

  12. 12.

    Lam, H. M. Coshigano, K. T., Oliveira, I. C., Melo-Oliveira, R., Coruzzi, G. M. (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 569–593.

    CAS  Article  Google Scholar 

  13. 13.

    Mallarino, A., UI-Haq, M. (1998) What about foliar fertilization of soybeans? Fluid J. 31, 8–11.

    Google Scholar 

  14. 14.

    Marschner, H. (1995) Mineral nutrition of higher plants. 2nd Edition. Academic Press, London.

    Google Scholar 

  15. 15.

    Mendel, R. R., Haensch, R. (2002) Molybdoenzymes and molybdenum cofactor in plants. Can. J. Bot. 72, 739–750.

    Google Scholar 

  16. 16.

    Miflin, B. J., Lea, P. J. (1982) Amino acid metabolism. Annu. Rev. Plant Physiol. 28, 299–329.

    Article  Google Scholar 

  17. 17.

    O’Neal, D., Joy, K. W. (1973) Glutamine synthetase of pea leaves, I. Purification, stabilization and pH optima. Arch. Biochem. Biophys. 159, 113–122.

    Article  Google Scholar 

  18. 18.

    Oaks, A. (1994) Primary nitrogen assimilation in higher plants and its regulation. J. Exp. Bot. 53, 1689–1698.

    Google Scholar 

  19. 19.

    Pate, J. S. (1973) Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol. Biochem. 5, 109–119.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ira Stancheva.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Hristozkova, M., Geneva, M., Stancheva, I. et al. Response of Inoculated Foliar Fed Pea Plants (Pisum sativum L.) to Reduced Mo Supply. BIOLOGIA FUTURA 58, 87–92 (2007). https://doi.org/10.1556/ABiol.58.2007.1.8

Download citation

Keywords

  • pea
  • foliar fertilizer
  • nitrogen assimilation
  • molybdenum