Acta Biologica Hungarica

, Volume 58, Issue 1, pp 75–86 | Cite as

Studies on the Antibacterial Activities and Mechanisms of Chitosan Obtained from Cuticles of Housefly Larvae

  • Y. J. JingEmail author
  • Y. J. Hao
  • H. Qu
  • Y. Shan
  • D. S. Li
  • R. Q. Du


Chitosan was obtained from cuticles of the housefly (Musca domestica) larvae. Antibacterial activities of different Mw chitosans were examined against six bacteria. Antibacterial mechanisms of chitosan were investigated by measuring permeability of bacterial cell membranes and observing integrity of bacterial cells. Results show that the antibacterial activity of chitosan decreased with increase in Mw. Chitosan showed higher antibacterial activity at low pH. Ca2+ and Mg2+ could markedly reduce the antibacterial activity of chitosan. The minimum inhibitory concentrations of chitosans ranged from 0.03% ~ 0.25% and varied with the type of bacteria and Mw of chitosan. Chitosan could cause leakage of cell contents of the bacteria and disrupt the cell wall.


molecular weight chitosan antibacterial activity antibacterial mechanism housefly larvae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We wish to thank Dr. K. Hou and Y. Wang for critical reading.


  1. 1.
    Bassi, R., Prasher, S. O., Simpson, B. K. (1999) Effects of organic acids on the adsorption of heavy metal ions by chitosan flakes. J. Environ. Sci. Health A34, 289-294.Google Scholar
  2. 2.
    Bittelli, M., Flury, M., Campbell, G. S., Nichols, E. J. (2001) Reduction of transpiration through foliar of chitosan. Agric. For. Meteorol. 107, 167–175.CrossRefGoogle Scholar
  3. 3.
    Chung, Y., Su, Y., Chen, C., Jia, G., Wang, H. L., Wu, J. C., Lin, J. G. (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 25, 932–936.PubMedGoogle Scholar
  4. 4.
    Chung, Y. C., Wang, H. L., Chen, Y. M., Li, S. L. (2003) Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresour. Technol. 88, 179–184.CrossRefGoogle Scholar
  5. 5.
    Dodane, V., Vilivalam, V. D., Jeon, Y. J. (1998) Pharmaceutical applications of chitosan. Pharm. Sci. Technol. Today 1, 246–253.CrossRefGoogle Scholar
  6. 6.
    Hara, S., Yamakawa, M. (1995) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mor. J. Biol. Chem. 270, 29923–29927.CrossRefGoogle Scholar
  7. 7.
    Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., Roller, S. (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 71, 235–244.CrossRefGoogle Scholar
  8. 8.
    Jia, Z., Shen, D., Xu, W. (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Research 333, 1–6.CrossRefGoogle Scholar
  9. 9.
    Kumar, M. N. V. R. (2000) A review of chitin and chitosan applications. Reactive & Functional Polym. 46, 1–27.CrossRefGoogle Scholar
  10. 10.
    Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G., Varaldo, P. E. (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother. 34, 2019-2023.Google Scholar
  11. 11.
    No, H. K., Park, N. Y., Lee, S. H., Meyers, S. P. (2002) Antibacterial activity of chitosans and chi-tosan oligomers with different molecular weights. Int. J. Food Microbiol. 74, 65–72.CrossRefGoogle Scholar
  12. 12.
    Papineau, A. M., Hoover, D. G., Knorr, D., Farkas, D. F. (1991) Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol. 5, 45-57.Google Scholar
  13. 13.
    Pedroni, V. I., Gschaider, M. E., Schulz, P. C. (2003) UV Spectrophotometry: improvements in the study of the degree of acetylation of chitosan. Macromol. Biosci. 3, 531-534.Google Scholar
  14. 14.
    Pospieszny, H. (1997) Antiviroid activity of chitosan. Crop Prot. 16, 105–106.CrossRefGoogle Scholar
  15. 15.
    Rabea, E. I., Badawy, M. E. T., Stebens, C. V., Smagghe, G., Steurbaut, W. (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol. 4, 1457–1465.CrossRefGoogle Scholar
  16. 16.
    Rhoades, J., Roller, S. (2000) Antimicrobial action of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microbiol. 66, 80-86.Google Scholar
  17. 17.
    Roberts, G. A. F., Domszy, J. G. (1982) Determination of viscometric constant for chitosan. Int. J. Biol. Macromol. 4, 374-377.Google Scholar
  18. 18.
    Roller, S., Covill, N. (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol. 47, 67–77.CrossRefGoogle Scholar
  19. 19.
    Shahidi, F., Arachchi, J. K. V., Jeon, Y. J. (1999) Food applications of chitin and chitosans. Trends in Food & Technol. 10, 37–51.CrossRefGoogle Scholar
  20. 20.
    Shimojoh, M., Fukushima, K., Kurita, K. (1998) Low-molecular-weight chitosans derived from b-chitin: preparation, molecular characteristics and aggregation activity. Carbohydr. Polym. 35, 223–231.CrossRefGoogle Scholar
  21. 21.
    Sudharshan, N. R., Hoover, D. G., Knorr, D. (1992) Antibacterial action of chitosan. Food Biotechnol. 6, 257–272.CrossRefGoogle Scholar
  22. 22.
    Tsai, G. J., Su, W. H. (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot. 62, 239–243.CrossRefGoogle Scholar
  23. 23.
    Tsai, G. J., Su, W. H., Chen, H. C., Pan, C. L. (2002) Antimicrobial activity of shrimp chitin and chi-tosan from different treatments and applications of fish preservation. Fisheries Sci. 68, 170–177.CrossRefGoogle Scholar
  24. 24.
    Tokura, S., Ueno, K., Miyazaki, S., Nishi, N. (1997) Molecular weight dependent antibacterial activity of chitosan. Macromol. Symp. 120, 1–9.CrossRefGoogle Scholar
  25. 25.
    Wicken, A. J., Knox, K. W. (1983) Cell surface amphiphiles of grampositive bacteria. Toxicon Suppl. 3, 501–512.CrossRefGoogle Scholar
  26. 26.
    Xie, W., Xu, P., Wang, W., Liu, Q. (2002) Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr. Polym. 50, 35–40.CrossRefGoogle Scholar
  27. 27.
    Young, D. H., Kohle, H., Kauss, H. (1982) Effect of Chitosan on membrane permeability of suspension cultured Glycine max and Phaseolus vulgaris cells. Plant Physiol. 70, 1449-1454.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Y. J. Jing
    • 1
    Email author
  • Y. J. Hao
    • 1
  • H. Qu
    • 1
  • Y. Shan
    • 1
  • D. S. Li
    • 1
  • R. Q. Du
    • 1
  1. 1.Department of Genetics, College of Life ScienceNankai UniversityTianjinP. R. China

Personalised recommendations