Studies on the Antibacterial Activities and Mechanisms of Chitosan Obtained from Cuticles of Housefly Larvae

Abstract

Chitosan was obtained from cuticles of the housefly (Musca domestica) larvae. Antibacterial activities of different Mw chitosans were examined against six bacteria. Antibacterial mechanisms of chitosan were investigated by measuring permeability of bacterial cell membranes and observing integrity of bacterial cells. Results show that the antibacterial activity of chitosan decreased with increase in Mw. Chitosan showed higher antibacterial activity at low pH. Ca2+ and Mg2+ could markedly reduce the antibacterial activity of chitosan. The minimum inhibitory concentrations of chitosans ranged from 0.03% ~ 0.25% and varied with the type of bacteria and Mw of chitosan. Chitosan could cause leakage of cell contents of the bacteria and disrupt the cell wall.

References

  1. 1.

    Bassi, R., Prasher, S. O., Simpson, B. K. (1999) Effects of organic acids on the adsorption of heavy metal ions by chitosan flakes. J. Environ. Sci. Health A34, 289-294.

    Google Scholar 

  2. 2.

    Bittelli, M., Flury, M., Campbell, G. S., Nichols, E. J. (2001) Reduction of transpiration through foliar of chitosan. Agric. For. Meteorol. 107, 167–175.

    Article  Google Scholar 

  3. 3.

    Chung, Y., Su, Y., Chen, C., Jia, G., Wang, H. L., Wu, J. C., Lin, J. G. (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 25, 932–936.

    CAS  PubMed  Google Scholar 

  4. 4.

    Chung, Y. C., Wang, H. L., Chen, Y. M., Li, S. L. (2003) Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresour. Technol. 88, 179–184.

    CAS  Article  Google Scholar 

  5. 5.

    Dodane, V., Vilivalam, V. D., Jeon, Y. J. (1998) Pharmaceutical applications of chitosan. Pharm. Sci. Technol. Today 1, 246–253.

    CAS  Article  Google Scholar 

  6. 6.

    Hara, S., Yamakawa, M. (1995) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mor. J. Biol. Chem. 270, 29923–29927.

    CAS  Article  Google Scholar 

  7. 7.

    Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., Roller, S. (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 71, 235–244.

    CAS  Article  Google Scholar 

  8. 8.

    Jia, Z., Shen, D., Xu, W. (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Research 333, 1–6.

    CAS  Article  Google Scholar 

  9. 9.

    Kumar, M. N. V. R. (2000) A review of chitin and chitosan applications. Reactive & Functional Polym. 46, 1–27.

    CAS  Article  Google Scholar 

  10. 10.

    Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G., Varaldo, P. E. (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother. 34, 2019-2023.

  11. 11.

    No, H. K., Park, N. Y., Lee, S. H., Meyers, S. P. (2002) Antibacterial activity of chitosans and chi-tosan oligomers with different molecular weights. Int. J. Food Microbiol. 74, 65–72.

    CAS  Article  Google Scholar 

  12. 12.

    Papineau, A. M., Hoover, D. G., Knorr, D., Farkas, D. F. (1991) Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol. 5, 45-57.

  13. 13.

    Pedroni, V. I., Gschaider, M. E., Schulz, P. C. (2003) UV Spectrophotometry: improvements in the study of the degree of acetylation of chitosan. Macromol. Biosci. 3, 531-534.

  14. 14.

    Pospieszny, H. (1997) Antiviroid activity of chitosan. Crop Prot. 16, 105–106.

    CAS  Article  Google Scholar 

  15. 15.

    Rabea, E. I., Badawy, M. E. T., Stebens, C. V., Smagghe, G., Steurbaut, W. (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol. 4, 1457–1465.

    CAS  Article  Google Scholar 

  16. 16.

    Rhoades, J., Roller, S. (2000) Antimicrobial action of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microbiol. 66, 80-86.

  17. 17.

    Roberts, G. A. F., Domszy, J. G. (1982) Determination of viscometric constant for chitosan. Int. J. Biol. Macromol. 4, 374-377.

  18. 18.

    Roller, S., Covill, N. (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol. 47, 67–77.

    CAS  Article  Google Scholar 

  19. 19.

    Shahidi, F., Arachchi, J. K. V., Jeon, Y. J. (1999) Food applications of chitin and chitosans. Trends in Food & Technol. 10, 37–51.

    CAS  Article  Google Scholar 

  20. 20.

    Shimojoh, M., Fukushima, K., Kurita, K. (1998) Low-molecular-weight chitosans derived from b-chitin: preparation, molecular characteristics and aggregation activity. Carbohydr. Polym. 35, 223–231.

    CAS  Article  Google Scholar 

  21. 21.

    Sudharshan, N. R., Hoover, D. G., Knorr, D. (1992) Antibacterial action of chitosan. Food Biotechnol. 6, 257–272.

    Article  Google Scholar 

  22. 22.

    Tsai, G. J., Su, W. H. (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot. 62, 239–243.

    CAS  Article  Google Scholar 

  23. 23.

    Tsai, G. J., Su, W. H., Chen, H. C., Pan, C. L. (2002) Antimicrobial activity of shrimp chitin and chi-tosan from different treatments and applications of fish preservation. Fisheries Sci. 68, 170–177.

    CAS  Article  Google Scholar 

  24. 24.

    Tokura, S., Ueno, K., Miyazaki, S., Nishi, N. (1997) Molecular weight dependent antibacterial activity of chitosan. Macromol. Symp. 120, 1–9.

    CAS  Article  Google Scholar 

  25. 25.

    Wicken, A. J., Knox, K. W. (1983) Cell surface amphiphiles of grampositive bacteria. Toxicon Suppl. 3, 501–512.

    Article  Google Scholar 

  26. 26.

    Xie, W., Xu, P., Wang, W., Liu, Q. (2002) Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr. Polym. 50, 35–40.

    CAS  Article  Google Scholar 

  27. 27.

    Young, D. H., Kohle, H., Kauss, H. (1982) Effect of Chitosan on membrane permeability of suspension cultured Glycine max and Phaseolus vulgaris cells. Plant Physiol. 70, 1449-1454.

Download references

Acknowledgements

We wish to thank Dr. K. Hou and Y. Wang for critical reading.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. J. Jing.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Jing, Y.J., Hao, Y.J., Qu, H. et al. Studies on the Antibacterial Activities and Mechanisms of Chitosan Obtained from Cuticles of Housefly Larvae. BIOLOGIA FUTURA 58, 75–86 (2007). https://doi.org/10.1556/ABiol.57.2007.1.7

Download citation

Keywords

  • molecular weight
  • chitosan
  • antibacterial activity
  • antibacterial mechanism
  • housefly larvae