Advertisement

Acta Biologica Hungarica

, Volume 57, Issue 4, pp 415–422 | Cite as

Effects of Citrus Flavonoids on Redox Homeostasis of Toxin-Injured Liver in Rat

  • Erika RapaviEmail author
  • Klára Szentmihályi
  • Erzsébet Fehér
  • Andrea Lugasi
  • Edit Székely
  • Tímea Kurucz
  • Zs. Pallai
  • Anna Blázovics
Article

Abstract

In order to evaluate the effect of diosmin-hesperidin containing drug on redox balance and Cu, Zn, Fe and Mn concentrations of toxin-injured liver, Wistar albino rats were subjected to thioacetamide administration (500 mg TAA/l in their drinking water) with and without drug (425 mg/kg body weight/day). Animals were treated for 30 days. No significant change in the concentration of Zn, Cu, Mn and Fe in the liver was measured in TAA-treated animals compared to control. Diosmin-hesperidin mixture treatment increased levels of Fe and Zn and decreased concentration of Cu of the liver in TAA-treated animals. These alterations were not significant. Decrease of both the total scavenger capacity (TSC) and the activity of superoxide dismutase (SOD) in liver homogenates were observed in TAA-treated rats. The diosmin-hesperidin-supplemented diet also significantly decreased the TSC and activity of SOD in liver of both the control and toxin-treated animals. On the basis of results it seems that high dosage of the diosmin-hesperidin mixture induces slight changes in the Cu, Zn, Mn and Fe content of the liver, however it may decrease the scavenger capacity and the activity of SOD when applied either alone or together with thioacetamide.

Keywords

Diosmin hesperidin thioacetamide-induced hepatotoxicity redox homeostasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to express gratitude to Mrs. Sarolta Bárkovits, Mrs. Edina Pintér and Mrs. Erzsébet Bíró for their excellent technical assistance. The study was supported by 2/1. Ph.D Program of Semmelweis University, by Széchenyi Projects, nos. 1/016/2001 and 1/047/2001 and by the NKFP 1/047/2004 project.

References

  1. 1.
    Abul, H., Mathew, T. C., Dashti, H. M., Al-Bader, A. (2002) Level of superoxide dismutase, glu-tathione peroxidase and uric acid in thioacetamide-induced cirrhotic rats. Anat. Histol. Embryol. 31, 66–71.CrossRefGoogle Scholar
  2. 2.
    Al-Bader, A. A., Mosawi, M. H., Hussain, T. A., Dashti, H. M. (2000) Effect of dietary selenium, zinc and allopurinol supplements on plasma and tissue manganese levels in rats with thioacetamide-induced liver cirrhosis. Mol. Cell. Biochem. 173, 121–125.CrossRefGoogle Scholar
  3. 3.
    Blázovics, A., Fehér, E., Fehér, J. (1992) Role of free radical reactions in experimental hyperlipi-demia in the pathomechanism of fatty liver. In: Csomós G, Fehér J (eds) Free Radicals and Liver. Spinger, Berlin, pp. 98–126.Google Scholar
  4. 4.
    Blázovics, A., Kovács, Á., Lugasi, A., Hagymási, K., Bíró, L., Fehér, J. (1999) Antioxidant defense in erythrocytes and plasma of patients with active and quiescent Crohn disease and ulcerative colitis: a chemiluminescent study. Clin. Chem. 45, 895–896.PubMedGoogle Scholar
  5. 5.
    Childs, J. F. L., Siegler, E. A. (1945) Uses of thioacetamide in agriculture. Scienc. 102, 68–72.CrossRefGoogle Scholar
  6. 6.
    Dashti, H., Jeppsson, B., Hagerstrand, I., Hultberg, B., Srinivas, U., Abdulla, M., Joelsson, B., Bengmark, S. (1987) Early biochemical and histological changes in rats exposed to a single injection of thioacetamide. Pharmacol. Toxicol. 60, 171–174.CrossRefGoogle Scholar
  7. 7.
    Jaeschke, H., Gores, G. J., Cederbaum, A. I., Hinson, J. A., Pessayre, D., Lemasters J. J. (2002) Mechanisms of hepatotoxicity. Toxicol. Sci. 65, 166–176.CrossRefGoogle Scholar
  8. 8.
    Labrid, C. (1994) Pharmacologic properties of Daflon 500 mg. Angiolog. 45, 524–530.Google Scholar
  9. 9.
    Lahouel, M., Boulkour, S., Segueni, N., Fillastre, J. P. (2004) [The flavonoids effect against vinblas-tine, cyclophosphamide and paracetamol toxicity by inhibition of lipid-peroxydation and increasing liver glutathione concentration]. Pathol. Biol. (Paris). 52, 314–322.CrossRefGoogle Scholar
  10. 10.
    Lowry, S. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  11. 11.
    Manthey, J. A., Guthrie, N., Grohmann, K. (2001) Biological properties of citrus flavonoids pertaining to cancer and inflammation. Current Med. Chem. 8, 135–153.CrossRefGoogle Scholar
  12. 12.
    Manuel, Y., Keenoy, B., Vertommen, J., De Leeuw, I. (1999) The effect of flavonoid treatment on the glycation and antioxidant status in type 1 diabetic patients. Diabetes Nutr. Metab. 12, 256–263.Google Scholar
  13. 13.
    Metze, K., Brandt, G. (1981) Copper and zinc content of liver, heart, skeletal muscle, and brain, in acute thioacetamide intoxication of rats. Hepatogastroenterol. 28, 99–101.Google Scholar
  14. 14.
    Miyake, Y., Yamamoto, K., Tsujihara, N., Osawa, T. (1998) Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipid. 33, 689–695.CrossRefGoogle Scholar
  15. 15.
    Ortega, M. A., Torres, M. I., Fernández, M. I., Rios, A., Sánchez-Pozo, A., Gil, A. (1997) Hepato-toxic agent thioacetamide induces biochemical and histological alterations in rat small intestine. Dig. Dis. Sci. 42, 1715–1723.CrossRefGoogle Scholar
  16. 16.
    Santus, R., Perdrix, L., Haigle, J., Morliere, P., Maziere, J. C., Maziere, C., Labrid, C. (1991) Daflon as a cellular antioxidant and a membrane-stabilizing agent in human fibroblasts irradiated by ultraviolet A radiation. Photoderm. Photoimmun. Photomed. 8, 200–205.Google Scholar
  17. 17.
    Sanz, N., Diez-Fernandez, C., Fernandez-Simon, L., Alvarez, A., Cascales, M. (1995) Relationship between antioxidant systems, intracellular thiols and DNA ploidy in liver of rats during experimental cirrhogenesis. Carcinogenesi. 16, 1585–1593.CrossRefGoogle Scholar
  18. 18.
    Shahidi, F., Wanasundara, P. K. J. P. D. (1995): Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 61, 549–554.Google Scholar
  19. 19.
    Sittig, M. (1985) Handbook of Toxic and Hazardous Chemicals and Carcinogens. 2nd ed. Noyes Publications, Park Ridge, NJ., pp. 856–879.Google Scholar
  20. 20.
    Stohs, S. J., Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad. Biol. Med. 18, 321–336.CrossRefGoogle Scholar
  21. 21.
    Sun, F., Hayami, S., Ogiri, Y., Haruna, S., Tanaka, K., Yamada, Y., Tokumaru, S., Kojo, S. (2000) Evaluation of oxidative stress based on lipid hydroperoxide, vitamin C and vitamin E during apop-tosis and necrosis caused by thioacetamide in rat liver. Biochim. Biophys. Act. 1500, 181–185.CrossRefGoogle Scholar
  22. 22.
    Szentmihályi, K., Then, M. (2000) Teas of Equiseti herba, Myrtilli folium and Salviae folium. Acta Aliment. Hung. 29, 43–49.CrossRefGoogle Scholar
  23. 23.
    The United States Pharmacopoeia 24, USP Convention Inc., Rockville, 2000.Google Scholar
  24. 24.
    Tirkey, N., Pilkhwal, S., Kuhad, A., Chopra, K. (2005) Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney. BMC Pharmacol. 31, 5: 2.Google Scholar
  25. 25.
    van Acker, S. A. B. E., de Groot, M. J., van den Berg, D.-J., Tromp, M. N. J. L., den Kelder, G. D.-O., van der Vijgh, W. J. F., Bast, A. (1996) A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 9, 1305–1312.CrossRefGoogle Scholar
  26. 26.
    Villa, P., Cova, D., De Francesco, L., Guaitani, A., Palladini, G., Perego, R. (1992) Protective effect of diosmetin on in vitro cell membrane damage and oxidative stress in cultured rat hepatocytes. Toxicol. 73, 179–189.CrossRefGoogle Scholar
  27. 27.
    Wardi, J., Reifen, R., Aeed, H., Zadel, L., Avni, Y., Bruck, R. (2001) Beta-carotene attenuates experimentally induced liver cirrhosis in rats. Isr. Med. Assoc. J. 3, 151–154.PubMedGoogle Scholar
  28. 28.
    Williams, J. R., Spencer, P. E. J., Rice-Evans, C. (2004) Flavonoids: antioxidants or signalling molecules? Free Rad. Biol. Med. 36, 838–849.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Erika Rapavi
    • 1
    Email author
  • Klára Szentmihályi
    • 2
  • Erzsébet Fehér
    • 3
  • Andrea Lugasi
    • 4
  • Edit Székely
    • 5
  • Tímea Kurucz
    • 6
  • Zs. Pallai
    • 6
  • Anna Blázovics
    • 1
  1. 1.II. Department of MedicineSemmelweis UniversityBudapestHungary
  2. 2.Chemical Research CenterHungarian Academy of SciencesBudapestHungary
  3. 3.II. Department of AnatomySemmelweis UniversityBudapestHungary
  4. 4.Fodor József National Center of Public HealthNational Institute of Food Hygiene and NutritionBudapestHungary
  5. 5.Central Hospital of the Hungarian State RailwaysBudapestHungary
  6. 6.Diachem Kft.BudapestHungary

Personalised recommendations