Advertisement

Acta Biologica Hungarica

, Volume 57, Issue 3, pp 323–329 | Cite as

Comparison of the Binding of Anti-Tubulin Antibody and the Fluorescent Taxol Derivative Flutax-1 to the Microtubular System of Tetrahymena

  • P. Kovács
  • G. Csaba
Article

Abstract

Using confocal microscopic analysis, FITC-labelled anti-α-tubulin antibody and the fluorescent taxol derivative Flutax-1 in fixed and living Tetrahymena pyriformis GL, longitudinal microtubules, oral and somatic cilia, deep fibers, and contractile vacuole pores were equally labeled. While the antibody stained transversal microtubules, these were not labeled by Flutax-1. At the same time, oral cilia were more intensely stained by Flutax-1, than by the antibody. There were no differences in the staining of fixed preparations and living cells. The observations suggest (i) the difference between the MAPs of longitudinal and transversal microtubules which allow or inhibit the binding of the indicator molecules, and (ii) the different functions of these two types of microtubules.

Keywords

Flutax-1 taxol transversal microtubuli-band Tetrahymena 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA-T-037303), Hungary.

References

  1. 1.
    Andreu, J. M., Diaz, J. F., Gil, R., de Pereda, J. M., Garcia de Lacoba, M., Peyrot, V., Briand, C., Towns-Andrews, E., Bordas J. (1994) Solution structure of Taxotere-induced microtubules to 3-nm resolution. The change in protofilament number is linked to the binding of the taxol side chain. J. Biol. Chem. 269, 31785–31792.PubMedGoogle Scholar
  2. 2.
    Arregui, L., Munoz-Fontel, C., Serrano, S., Barasoain, I., Guinea, A. (2002) Direct visualization of the microtubular cytoskeleton of ciliated protozoa with a fluorescent taxoid. J. Eukaryot. Microbiol. 49, 312–318.CrossRefGoogle Scholar
  3. 3.
    Aufderheide, K. J., Frankel, J., Williams, N. E., (1980) Formation and positioning of surface-related structures in Protozoa. Microbiol. Rev. 44, 252–302.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Diaz, J. F., Barasoain, I., Andreu, J. M., (2003) Fast kinetics of taxol binding to microtubules. Effects of solution variables and microtubule-associated proteins. J. Biol. Chem. 278, 8407–8419.CrossRefGoogle Scholar
  5. 5.
    Evangelio, J. A., Abal, M., Barasoain, I., Souto, A. A., Lillo, M. P., Acuna, A. U., Amat-Guerri, F., Andreu, J. M., (1998) Fluorescent taxoids as probes of the microtubule cytoskeleton. Cell Motility Cytoskeleton 39, 73–90.CrossRefGoogle Scholar
  6. 6.
    Gaertig, J. (2000) Molecular mechanism of microtubular organelle assembly in Tetrahymena. J. Eukaryot. Microbiol. 47, 185–190.CrossRefGoogle Scholar
  7. 7.
    Kovács, P., Csaba, G. (2005) Effect of drugs affecting microtubular assembly on microtubules, phospholipid synthesis and physiological indices (signalling, growth, motility and phagocytosis) in Tetrahymena pyriformis. Cell Biochem. Funct. 23, 1–11.CrossRefGoogle Scholar
  8. 8.
    Kovács, P., Csaba, G., Czaker, R. (2005) Effects of taxol treatment on the microtubular system and mitochondria of Tetrahymena. Acta Protozool. (in press).Google Scholar
  9. 9.
    Lynn, D. H. (1988) Cytoterminology of cortical components of ciliates: somatic and oral kinetids. BioSystems 21, 299–307.CrossRefGoogle Scholar
  10. 10.
    Margolis, R. L., Wilson, L. (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13, 1–8.CrossRefGoogle Scholar
  11. 11.
    Nogales, E., Whitakker, M., Milligan, R. A., Downing, K. H., (1999) High-resolution model of the microtubule. Cell 96, 79–88.CrossRefGoogle Scholar
  12. 12.
    Pazour, G. J., Agrin, N., Leszik, J., Witman, G. B., (2005) Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103–113.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Kovács
    • 1
  • G. Csaba
    • 1
  1. 1.Department of Genetics, Cell and ImmunobiologySemmelweis UniversityBudapestHungary

Personalised recommendations