Advertisement

Acta Biologica Hungarica

, Volume 55, Issue 1–4, pp 185–194 | Cite as

The Effect of Food Intake on the Central Monoaminergic System in the Snail, Lymnaea Stagnalis

  • L. HernádiEmail author
  • L. Hiripi
  • Varya Dyakonova
  • J. Győri
  • Ágnes Vehovszky
Article

Abstract

We investigated the effect of food intake on the serotonin and dopamine levels of the CNS as well as on the spontaneous firing activity of the CGC in isolated preparations from starved, feeding and satiated animals. Furthermore we investigated the effects of 1 μM serotonin and/or dopamine and their mixture on the firing activity of the CGC. The HPLC assay of serotonin and dopamine showed that during food intake both the serotonin and dopamine levels of the CNS increased whereas in satiated animals their levels were not significantly more than the control levels. Recording from the CGC in isolated CNS preparation from starved, feeding or satiated animals showed that feeding increased the firing frequency of the CGC compared to the starved control. The application of 1 μM dopamine decreased the firing frequency whereas the application of 1 μM serotonin increased the firing frequency of the CGC. We conclude that during food intake the external and internal food stimuli increase the activity of the central monoaminergic system and also increase the levels of monoamines in the CNS. Furthermore, we also suggest that the increased dopamine and serotonin levels both affect the activity of the serotonergic neurons during the different phases of feeding.

Keywords

Dopamine serotonin CGC feeding Lymnaea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyakonova, V. E. D., Sakharov, D. A. (2001) Firing of an isolated serotonergic neuron depends on the rate of neurotransmitter synthesis. Doklady Biol. Set 376, 267–270.Google Scholar
  2. 2.
    Dyakonova, V. E. D., Sakharov, D. A. (2001) An isolated serotonergic neuron: The mechanism of excitation induced by enhanced synthesis of neurotransmitter. Doklady Biol. Sci. 378, 694–696.Google Scholar
  3. 3.
    Elekes, K., Kemenes, G., Hiripi, L., Geffard, M., Benjamin, P. R. (1991) Dopamine-immunoreactive neurones in the central nervous system of the pond snail Lymnaea stagnalis. J. Comp. Neurol. 307, 214–224.PubMedGoogle Scholar
  4. 4.
    Elliott, C. J. H., Susswein, A. J. (2002) Comparative neuroethology of feeding control in molluscs. J. Experimental Biol. 205, 877–896.Google Scholar
  5. 5.
    Fiore, L., Gepetti, L., DeSantis, A., Pieneman, A. W., Ferguson, G. P. (1992) Bidirectional transmission in the cerebro-buccal connective of Aplysia during feeding. Acta Biol. Hung. 43, 343–350.PubMedGoogle Scholar
  6. 6.
    Gillette, R., Davis, W. J. (1977) The role of the metacerebral giant neuron in the feeding behavior of Pleurobranchaea. J. Comp. Physiol. 116, 129–159.Google Scholar
  7. 7.
    Granzow, B., Kater, S. B. (1977) Identified higher-order neurons controlling the feeding motor program of Helisoma. Neurosci. 2, 1049–1063.Google Scholar
  8. 8.
    Hernadi, L., Erdelyi, L., Hiripi, L., Elekes, K. (2000) The possible roles of the monoaminergic system in the feeding of the snail Helix pomatia. ActaBiol. Hung. 51, 177–187.Google Scholar
  9. 9.
    Horn, C. C., Geizhals, C. R., Kupfermann, I. (2001) Further studies of bulk and orosensory decrement in producing satiation of feeding in Aplysia. Brain Res. 918, 51–59.PubMedGoogle Scholar
  10. 10.
    Jansen, R. F., Pieneman, A. W., Ter Maat, A. (1997) Behavior dependent activities of a. central pattern generator in freely behaving Lymnaea stagnalis. J. Neurophysiol. 78, 3415–3427.PubMedGoogle Scholar
  11. 11.
    Kabotyanski, E. A., Baxter, D. A., Byrne, J. H. (1998) Identification and characterization of cate-cholaminergic neuron B65, which initiates and modifies patterned activity in the buccal ganglia of Aplysia. J. Neurophysiol. 79, 605–621.PubMedGoogle Scholar
  12. 12.
    Kabotyanski, E. A., Baxter, D. A., Cushman, S. J., Byrne, J. H. (2000) Modulation of Active feeding by dopamine and serotonin. J. Neurophysiol. 83, 374–392.PubMedGoogle Scholar
  13. 13.
    Kemenes, G., Elliott, C. J. H., Benjamin, R. R. (1986) Chemical and tactile inputs to the Lymnaea feeding system. Effects on behaviour and neural circuitry. J. Exp. Biol. 122, 113–137.Google Scholar
  14. 14.
    Kemenes, G., Elekes, K., Hiripi, L., Benjamin, P. R. (1989) A. comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail Lymnaea. J. Neurocytol. 18, 193–208.PubMedGoogle Scholar
  15. 15.
    Kemenes, G., Staras, K., Benjamin, P. R. (2001) Multiple types of control by identified interneurons in a. sensory activated rhythmic motor pattern. J. Neurosci. 21, 2903–2911.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kiriakides, M. A., McCrohan, C. R. (1989) Effect of putative neuromodulators on rhytmic buccal motor output in Lymnaea stagnalis. J. Neurobiol. 20, 635–650.Google Scholar
  17. 17.
    Kupferman, I., Cohen, J. L., Mandelbaum, D. E., Schonberg, M., Susswein, A. J., Weiss, K. R. (1979) Functional role of serotonergic neuromodulation in Aplysia. Fed. Proc. 38, 2095–2102.Google Scholar
  18. 18.
    Kupfermann, I. (1974) Feeding behavior in Aplysia: a. simple system for the study of motivation. Behav. Biol. 10, 1–26.PubMedGoogle Scholar
  19. 19.
    Kupfermann, I., Teyke, T., Rosen, S. C., Weiss, K. R. (1991) Studies of behavioral state in Aplysia. Biol. Bull. 180, 262–268.PubMedGoogle Scholar
  20. 20.
    Kupfermann, I., Weiss, K. R. (1982) Activity of an identified serotonergic neuron in free moving Aplysia correlates with behavioral arousal. Brain Res. 241, 334–337.PubMedGoogle Scholar
  21. 21.
    Kuslansky, B., Weiss, K. R., Kupfermann, I. (1987) Mechanism underlying satiation of feeding behavior of the mollusc Aplysia. Behav. Neural Biol. 48, 278–303.PubMedGoogle Scholar
  22. 22.
    McCrohan, C. R. (1984) Initiation of feeding motor output by an identified interneurone in the snail Lymnaea stagnalis. J. Exp. Biol. 113, 351–366.Google Scholar
  23. 23.
    McCrohan, C. R., Benjamin, P. R. (1980) Synaptic relationships of the cerebral giant cells with motor neurons in the feeding system of Lymnaea stagnalis. J. Exp. Biol. 8, 169–186.Google Scholar
  24. 24.
    McCrohan, C. R., Audesirk, T. E. (1987) Initiation maintenance and modification of patterned buccal motor output by the cerebral giant cells of Lymnaea stagnalis. Comp. Biochem. Physiol. 87A, 969–977.Google Scholar
  25. 25.
    McCrohan, C. R., Kyriakides, M. A., Tuersley, M. D. (1989) Initiation and modification of rhythmic buccal motor output in the isolated central nervous system of Lymnaea stagnalis. J. Molluscan. Stud. 55, 183–192.Google Scholar
  26. 26.
    Murphy, A. D. (2001) The neuronal basis of feeding in the snail Helisoma, with comparison to selected gastropods. Prog. Neurobiol. 63, 383–408.PubMedGoogle Scholar
  27. 27.
    Perrins, S., Weiss, K. R. (1996) A. cerebral central pattern generator in Aplysia and its connections with buccal feeding circuitry. J. Neurosci. 16, 7030–7045.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Perrins, S., Weiss, K. R. (1998) Compartmentalization of information processing in Aplysia feeding circuit interneuron through membrane properties and synaptic interactions. J. Neurosci. 18, 3977–3989.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Quinlan, E. M., Arnett, B. C., Murphy, A. D. (1997) Feeding stimulants activate an identified dopaminergic interneuron that induces the feeding motor program in Helisoma. J. Neurophysiol 78, 812–824.PubMedGoogle Scholar
  30. 30.
    Rosen, S. C., Weiss, K. R., Goldstein, R. S., Kupfermann, I. (1989) The role of a. modulatory neuron in feeding and satiation in Aplysia: effects of lesioning of the serotonergic metacerebral cells. J. Neuroscience 9, 1562–1578.Google Scholar
  31. 31.
    Rosen, S. C., Teyke, T., Miller, M. W., Weiss, K. R., Kupfermann, I. (1991) Identification and characterization of cerebro-to-buccal interneurons implicated in the control of motor programs associated with feeding in Aplysia. J. Neurosci 11, 3630–3655.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Rosen, S. C., Weiss, K. R., Cohen, J. L., Kupfermann, I. (1982) Interganglionic cerebral-buccal mechanoafferents of Aplysia: receptor fields and synaptic connections to different classes of neurons involved in feeding behavior. J. Neurophysiol. 48, 271–288.PubMedGoogle Scholar
  33. 33.
    Rosen, S. C., Weiss, K. R., Kupfermann, I. (1982) Cross-modality sensory integration in the control of feeding in Aplysia. Behav. Neural Biol. 35, 56–63.PubMedGoogle Scholar
  34. 34.
    Rosen, S. C., Kupfermann, I., Goldstein, R. S., Weiss, K. R. (1983) Lesion of a. serotonergic modulatory neuron in Aplysia produces specific defect in feeding behavior. Brain Res. 260, 151–155.PubMedGoogle Scholar
  35. 35.
    Staras, K., Kemenes, G., Benjamin, R. R. (1999) Electrophysiological and behavioral analysis of lip touch as a. component of the food stimulus in the snail Lymnaea. J. Neurophysiol. 81, 1261–1273.PubMedGoogle Scholar
  36. 36.
    Susswein, A. J., Kupfermann, I., Weiss, K. R. (1976) The stimulus control of biting in Aplysia. J. Comp. Physiol. 108, 75–96.Google Scholar
  37. 37.
    Susswein, A. J., Weiss, K. R., Kupfermann, I. (1978) The effect of food arousal on the latency of biting in Aplysia. J. Comp. Psychol. 123, 31–41.Google Scholar
  38. 38.
    Susswein, A. J., Weiss, K. R., Kupfermann, I. (1984) Internal stimuli enhance feeding behavior in the mollusc Aplysia. Behav. Neural Biol. 41, 90–95.PubMedGoogle Scholar
  39. 39.
    Susswein, A. J., Kupfermann, I. (1975) Bulkasa. stimulus for satiation in Aplysia. Behavioral Biol. 13, 203–209.Google Scholar
  40. 40.
    Susswein, A. J., Kupfermann, I. (1975) Localization of bulk stimuli underlying satiation in Aplysia. J. Comp. Physiol. 101, 309–328.Google Scholar
  41. 41.
    Straub, V. A., Benjamin, R. R. (2001) Extrinsic modulation and motor pattern generation in feeding network: a. cellular study. J. Neurosci. 21, 1767–1778.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Straub, V. A., Staras, K., Kemenes, G., Benjamin, P. R. (2002) Endogenous and network properties of Lymnaea feeding central pattern generator interneurons. J. Neurophysiol. 88, 1569–1583.PubMedGoogle Scholar
  43. 43.
    Teyke, T., Rosen, S. C., Weiss, K. R., Kupfermann, I. (1993) Dopaminergic neuron B20 generates rhythmic neuronal activity in the feeding motor circuitry of Aplysia. Brain Res. 630, 226–237.PubMedGoogle Scholar
  44. 44.
    Trimble, D. R., Barker, D. L. (1984) Activation by dopamine of patterned motor output from the buccal ganglia of Helisoma trivolis. J. Neurobiol. 15, 37–48.PubMedGoogle Scholar
  45. 45.
    Tuersley, M. D., McCrohan, C. R. (1987) Food arousal in the pond snail, Lymnaea stagnalis. Behav. Neural Biol. 48, 222–236.Google Scholar
  46. 46.
    Tuersley, M. D., McCrohan, C. R. (1988) Serotonergic modulation of patterned motor output in Lymnaea stagnalis. J. Experimental Biol. 135, 473–488.Google Scholar
  47. 47.
    Weiss, K. R., Cohen, J. L., Kupfermann, I. (1978) Modulatory control of buccal musculature by a. serotonergic neuron (Metacerebral cell) in Aplysia. J. Neurophysiol. 41, 181–203.PubMedGoogle Scholar
  48. 48.
    Weiss, K. R., Koch, U. T., Koester, J., Mandelbaum, D. E., Kupfermann, I. (1981) Neural and molecular mechanisms of food-induced arousal in Aplysia californica. In: Salanki, J. (ed.) Advances in Physiological Sciences. Vol. 23. Neurobiology of Invertebrates. Pergamon, Oxford, pp. 305–344.Google Scholar
  49. 49.
    Vehovszky, A., Elliott, C. J. H. (2001) Activation and reconfiguration of Active feeding by the octopamine-containing modulatory OC interneurons in the pond snail Lymnaea stagnalis. J. Neurophysiol. 86, 792–808.PubMedGoogle Scholar
  50. 50.
    Wieland, S. J., Gelperin, A. (1983) zDopamine elicits feeding motor program in Limax maximus. J. Neurosci. 3, 1735–1745.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Yeoman, M. S., Pieneman, A. W., Ferguson, G. P., Ter Maat, A., Benjamin, P. R. (1994) Modulatory role for the serotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. I. Fine wire recording in the intact animal and pharmacology. J. Neurophysiol 72, 1357–1371.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • L. Hernádi
    • 1
    Email author
  • L. Hiripi
    • 1
  • Varya Dyakonova
    • 2
  • J. Győri
    • 1
  • Ágnes Vehovszky
    • 1
  1. 1.Department of Experimental Zoology, Balaton Limnological Research InstituteHungarian Academy of SciencesTihanyHungary
  2. 2.Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations