Acta Biologica Hungarica

, Volume 55, Issue 1–4, pp 177–183 | Cite as

Second Messengers of Octopamine Receptors in the Snail Lymnaea

  • Samantha Pitt
  • Ágnes Vehovszky
  • Henriette Szabó
  • C. J. H. ElliottEmail author


We describe octopamine responses of 3 large buccal neurons of Lymnaea and test the hypothesis that these are cAMP-dependent.

The B1 neuron is excited by octopamine and the depolarisation is significantly enlarged (P < 0.05) by application of the blocker of cAMP breakdown, 3-isobutyl-l-methylxanthine (IBMX). The Bl neuron is also depolarised by forskolin, an activator of adenylyl cyclase.

The B2 and B3 neurons are inhibited by octopamine, and the response is not affected by IBMX. Both cells are excited by forskolin.

We conclude that the Bl neuron response to octopamine is likely to be mediated by cAMP, while the B2 and B3 responses are cAMP-independent.


Lymnaea stagnalis feeding octopamine receptor second messenger 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahls, F. H. (1990) Analysis of a. long-duration hyperpolarization produced by octopamine in an identified effector neuron of Helisoma. Neurosci. Lett. 120, 131–133.CrossRefGoogle Scholar
  2. 2.
    Baines, D., Downer, R. G. H. (1994) Octopamine enhances phagocytosis in cockroach hemocytes -involvement of inositol trisphosphate. Arch. Insect Biochem. Physiol. 26, 249–261.CrossRefGoogle Scholar
  3. 3.
    Chang, D. J., Li, X. C., Lee, Y. S., Kim, H. K., Kim, U. S., Cho, N. J., Lo, X., Weiss, K. R., Kandel, E. R., Kaang, B. K. (2000) Activation of a. heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in Aplysia sensory neurons. Proc. Natl. Acad. Sci. U. S. A., 97, 1829–1834.CrossRefGoogle Scholar
  4. 4.
    Elliott, C. J. H., Kemenes, G. (1992) Cholinergic interneurons in the feeding system of the pond snail Lymnaeastagnalis. II. Nl interneurons make cholinergic synapses with feeding motoneurons. Philos. Trans. R. Soc. LondB 336, 167–180.CrossRefGoogle Scholar
  5. 5.
    Elliott, C. J. H., Stow, R. A., Hastwell, C. (1992) Cholinergic interneurons in the feeding system of the pond snail Lymnaea stagnalis. I. Cholinergic receptors on feeding neurons. Philos. Trans. R. Soc. LondB. 336, 157–166.CrossRefGoogle Scholar
  6. 6.
    Evans, R. D. (1984) A. modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J. Physiol. 348, 307–324.CrossRefGoogle Scholar
  7. 7.
    Evans, P. D. (1984) Studies on the mode of action of octopamine, 5-hydroxytryptamine and proctolin on a. myogenic rhythm in the locust. J. Exp. Biol. 110, 231–251.PubMedGoogle Scholar
  8. 8.
    Gerhardt, C. C., Bakker, R. A., Piek, G. J., Planta, R. J., Vreugdenhil, E., Leysen, J. E., van Heerikhuizen, H. (1997) Molecular cloning and pharmacological characterization of a. molluscan octopamine receptor. Mo/. Pharmacol. 51, 293–300.Google Scholar
  9. 9.
    Gerhardt, C. C., Lodder, H. C., Vincent, M., Bakker, R. A., Planta, R. J., Vreugdenhil, E., Kits, K. S., van Heerikhuizen, H. (1997) Cloning and expression of a. complementary DNA encoding a. molluscan octopamine receptor that couples to chloride channels in HEK293 cells. J. Biol. Chem. 272, 6201–6207.CrossRefGoogle Scholar
  10. 10.
    Nathanson, J. A., Greengard, P. (1973) Octopamine-sensitive adenylate cyclse: evidence for a. biological role of octopamine in nervous tissue. Science 180, 308–310.CrossRefGoogle Scholar
  11. 11.
    Roeder, T. (1999) Octopamine in invertebrates. Prog. Neurobiol. 59, 533–561.CrossRefGoogle Scholar
  12. 12.
    Rose, R. M., Benjamin, P. R. (1981) Interneuronal control of feeding in the pond snail Lymnaea stagnalis. 1. Initiation of feeding cycles by a. single buccal interneurone. J. Exp. Biol. 92, 187–201.Google Scholar
  13. 13.
    Rose, R. M., Benjamin, P. R. (1981) Interneuronal control of feeding in the pond snail Lymnaea stagnalis. 2. The interneuronal mechanism generating feeding cycles. J. Exp. Biol. 92, 203–228.Google Scholar
  14. 14.
    Rose, R. M., Benjamin, P. R. (1979) The relationship of the central motor pattern to the feeding cycle of Lymnaea stagnalis. J. Exp. Biol. 80, 137–163.PubMedGoogle Scholar
  15. 15.
    Vehovszky, A., Elliott, C. J. H. (1995) The hybrid modulatory/pattern generating NIL interneuron in the buccal feeding system of Lymnaea is cholinergic. Invert. Neurosci. 1, 67–74.CrossRefGoogle Scholar
  16. 16.
    Vehovszky, A., Elliott, C. J. H. (2001) Activation and reconfiguration of fictive feeding by the octopamine-containing modulatory OC interneurons in the snail Lymnaea. J. Neurophysiol. 86, 792–808.CrossRefGoogle Scholar
  17. 17.
    Vehovszky, A., Elliott, C. J. H., Voronezhskaya, E. E., Hiripi, L., Elekes, K. (1998) Octopamine: A. new feeding modulator in Lymnaea. Phil. Trans. Roy. Soc. Lond B. 353, 1631–1643.CrossRefGoogle Scholar
  18. 18.
    Vehovszky, A., Hiripi, L., Elliott, C. J. H. (2000) Octopaminergic synaptic connections between the identified buccal OC neurons and members of the buccal feeding network or the pond snail Lymnaea stagnalis. Eur. J. Neurosci. 12, 92.Google Scholar
  19. 19.
    Whim, M. D., Evans, P. D. (1991) The role of cyclic-amp in the octopaminergic modulation of flight-muscle in the locust. J. Exp. Biol. 161, 423–438.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Samantha Pitt
    • 1
    • 3
  • Ágnes Vehovszky
    • 1
    • 2
  • Henriette Szabó
    • 2
  • C. J. H. Elliott
    • 1
    Email author
  1. 1.Department of BiologyUniversity of YorkYorkEngland
  2. 2.Department of Experimental Zoology, Balaton Limnological Research InstituteHungarian Academy of SciencesTihanyHungary
  3. 3.Department of PhysiologyUniversity of CambridgeCambridgeEngland

Personalised recommendations