Second Messengers of Octopamine Receptors in the Snail Lymnaea

Abstract

We describe octopamine responses of 3 large buccal neurons of Lymnaea and test the hypothesis that these are cAMP-dependent.

The B1 neuron is excited by octopamine and the depolarisation is significantly enlarged (P < 0.05) by application of the blocker of cAMP breakdown, 3-isobutyl-l-methylxanthine (IBMX). The Bl neuron is also depolarised by forskolin, an activator of adenylyl cyclase.

The B2 and B3 neurons are inhibited by octopamine, and the response is not affected by IBMX. Both cells are excited by forskolin.

We conclude that the Bl neuron response to octopamine is likely to be mediated by cAMP, while the B2 and B3 responses are cAMP-independent.

References

  1. 1.

    Bahls, F. H. (1990) Analysis of a. long-duration hyperpolarization produced by octopamine in an identified effector neuron of Helisoma. Neurosci. Lett. 120, 131–133.

    CAS  Article  Google Scholar 

  2. 2.

    Baines, D., Downer, R. G. H. (1994) Octopamine enhances phagocytosis in cockroach hemocytes -involvement of inositol trisphosphate. Arch. Insect Biochem. Physiol. 26, 249–261.

    CAS  Article  Google Scholar 

  3. 3.

    Chang, D. J., Li, X. C., Lee, Y. S., Kim, H. K., Kim, U. S., Cho, N. J., Lo, X., Weiss, K. R., Kandel, E. R., Kaang, B. K. (2000) Activation of a. heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in Aplysia sensory neurons. Proc. Natl. Acad. Sci. U. S. A., 97, 1829–1834.

    CAS  Article  Google Scholar 

  4. 4.

    Elliott, C. J. H., Kemenes, G. (1992) Cholinergic interneurons in the feeding system of the pond snail Lymnaeastagnalis. II. Nl interneurons make cholinergic synapses with feeding motoneurons. Philos. Trans. R. Soc. LondB 336, 167–180.

    CAS  Article  Google Scholar 

  5. 5.

    Elliott, C. J. H., Stow, R. A., Hastwell, C. (1992) Cholinergic interneurons in the feeding system of the pond snail Lymnaea stagnalis. I. Cholinergic receptors on feeding neurons. Philos. Trans. R. Soc. LondB. 336, 157–166.

    CAS  Article  Google Scholar 

  6. 6.

    Evans, R. D. (1984) A. modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J. Physiol. 348, 307–324.

    CAS  Article  Google Scholar 

  7. 7.

    Evans, P. D. (1984) Studies on the mode of action of octopamine, 5-hydroxytryptamine and proctolin on a. myogenic rhythm in the locust. J. Exp. Biol. 110, 231–251.

    CAS  PubMed  Google Scholar 

  8. 8.

    Gerhardt, C. C., Bakker, R. A., Piek, G. J., Planta, R. J., Vreugdenhil, E., Leysen, J. E., van Heerikhuizen, H. (1997) Molecular cloning and pharmacological characterization of a. molluscan octopamine receptor. Mo/. Pharmacol. 51, 293–300.

    CAS  Google Scholar 

  9. 9.

    Gerhardt, C. C., Lodder, H. C., Vincent, M., Bakker, R. A., Planta, R. J., Vreugdenhil, E., Kits, K. S., van Heerikhuizen, H. (1997) Cloning and expression of a. complementary DNA encoding a. molluscan octopamine receptor that couples to chloride channels in HEK293 cells. J. Biol. Chem. 272, 6201–6207.

    CAS  Article  Google Scholar 

  10. 10.

    Nathanson, J. A., Greengard, P. (1973) Octopamine-sensitive adenylate cyclse: evidence for a. biological role of octopamine in nervous tissue. Science 180, 308–310.

    CAS  Article  Google Scholar 

  11. 11.

    Roeder, T. (1999) Octopamine in invertebrates. Prog. Neurobiol. 59, 533–561.

    CAS  Article  Google Scholar 

  12. 12.

    Rose, R. M., Benjamin, P. R. (1981) Interneuronal control of feeding in the pond snail Lymnaea stagnalis. 1. Initiation of feeding cycles by a. single buccal interneurone. J. Exp. Biol. 92, 187–201.

    Google Scholar 

  13. 13.

    Rose, R. M., Benjamin, P. R. (1981) Interneuronal control of feeding in the pond snail Lymnaea stagnalis. 2. The interneuronal mechanism generating feeding cycles. J. Exp. Biol. 92, 203–228.

    Google Scholar 

  14. 14.

    Rose, R. M., Benjamin, P. R. (1979) The relationship of the central motor pattern to the feeding cycle of Lymnaea stagnalis. J. Exp. Biol. 80, 137–163.

    CAS  PubMed  Google Scholar 

  15. 15.

    Vehovszky, A., Elliott, C. J. H. (1995) The hybrid modulatory/pattern generating NIL interneuron in the buccal feeding system of Lymnaea is cholinergic. Invert. Neurosci. 1, 67–74.

    CAS  Article  Google Scholar 

  16. 16.

    Vehovszky, A., Elliott, C. J. H. (2001) Activation and reconfiguration of fictive feeding by the octopamine-containing modulatory OC interneurons in the snail Lymnaea. J. Neurophysiol. 86, 792–808.

    CAS  Article  Google Scholar 

  17. 17.

    Vehovszky, A., Elliott, C. J. H., Voronezhskaya, E. E., Hiripi, L., Elekes, K. (1998) Octopamine: A. new feeding modulator in Lymnaea. Phil. Trans. Roy. Soc. Lond B. 353, 1631–1643.

    CAS  Article  Google Scholar 

  18. 18.

    Vehovszky, A., Hiripi, L., Elliott, C. J. H. (2000) Octopaminergic synaptic connections between the identified buccal OC neurons and members of the buccal feeding network or the pond snail Lymnaea stagnalis. Eur. J. Neurosci. 12, 92.

  19. 19.

    Whim, M. D., Evans, P. D. (1991) The role of cyclic-amp in the octopaminergic modulation of flight-muscle in the locust. J. Exp. Biol. 161, 423–438.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. J. H. Elliott.

Additional information

Presented at the 10th ISIN Symposium on Invertebrate Neurobiology, July 1–5, 2003, Tihany, Hungary.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Pitt, S., Vehovszky, Á., Szabó, H. et al. Second Messengers of Octopamine Receptors in the Snail Lymnaea. BIOLOGIA FUTURA 55, 177–183 (2004). https://doi.org/10.1556/ABiol.55.2004.1-4.22

Download citation

Keywords

  • Lymnaea stagnalis
  • feeding
  • octopamine
  • receptor
  • second messenger