From Bioassays to Drosophila Genetics: Strategies for Characterizing an Essential Insect Neurohormone, Bursicon

Abstract

We describe the molecular analysis and cellular expression of the insect peptide neurohormone, bursicon. Bursicon triggers the sclerotization of the soft insect cuticle after ecdysis. Using protein elution analyses from SDS gels, we determined the molecular weight of bursicon from different insects to be approximately 30 kDa. Four partial peptide sequences of Periplaneta americana bursicon were obtained from purified nerve cord homogenates separated on two-dimensional gels. Antibodies produced against one of the sequences identified the cellular location of bursicon in different insects and showed that bursicon is co-produced with crustacean cardioactive peptide (CCAP) in the same neurons in all insects tested so far. Additionally, using the partial peptide sequences, we successfully searched the Drosophila genome project for the gene encoding bursicon. With Drosophila as a tool, we can now verify the function of the sequence using transgenic flies. Sequence comparisons also allowed us to verify that bursicon is conserved, corroborating the older data from bioassays and immunohistochemical analyses. The sequence of bursicon will enable further analysis of its function, release, and evolution.

References

  1. 1.

    Baker, J. D., Truman, J. W. (2002) Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. J. Exp. Biol. 205, 2555–2565.

    CAS  PubMed  Google Scholar 

  2. 2.

    Cotrell, C. B. (1962) The imaginal ecdysis of blowflies. The control of cuticular hardening and darkening. J. Exp. Biol. 39, 395–411.

    Google Scholar 

  3. 3.

    Dircksen, H. (1994) Distribution and physiology of crustacean cardioactive peptide in arthropods. In: Davey, K. G., Peter, R. E., Tobe, S. S. (eds) Perspectives in Comparative Endocrinology. Ottawa: National Research Council of Canada, pp. 139–148.

    Google Scholar 

  4. 4.

    Ewer, J., Truman, J. W. (1996) Increases of cyclic 3’,5’-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionary conserved crustacean cardioactive peptide-immunoreactive insect neuronal network. J. Comp. Neurol. 370, 330–341.

    CAS  Article  Google Scholar 

  5. 5.

    Ewer, J., Reynolds, S. (2002) Neuropeptide control of molting in insects. In: Pfaff, D. W., Arnold, A. P., Fahrbach, S. E., Etgen, A. M., Rubin, R. T. (eds) Hormones, Brain and Behavior. Vol. 3, Academic Press, San Diego, pp. 1–92.

    CAS  Google Scholar 

  6. 6.

    Fraenkel, G. (1965) Observations and experiments on the blowfly (Calliphora erythrocephala) during the first day after emergence. Proc. Zool. Soc. London, 87, 893–904.

    Google Scholar 

  7. 7.

    Fraenkel, G., Hsiao, C. (1962) Hormonal and nervous control of tanning in the fly. Science 138, 27–29.

    CAS  Article  Google Scholar 

  8. 8.

    Fraenkel, G., Hsiao, C. (1965) Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects. J. Insect Physiol. 11, 513–556.

    CAS  Article  Google Scholar 

  9. 9.

    Fraenkel, G., Hsiao, C., Seligman, M. (1966) Properties of bursicon: an insect protein hormone that controls cuticular tanning. Science 151, 91–93.

    CAS  Article  Google Scholar 

  10. 10.

    Fridovich, I. (1986) Superoxide dismutases. Adv. Enzymol. 58, 61–97.

    CAS  PubMed  Google Scholar 

  11. 11.

    Gammie, S. C., Truman, J. W. (1997) Neuropeptide hierarchies and the activation of sequential motor behaviors in the Hawkmoth, Manduca sexta. J. Neurosci. 17, 4389–4397.

    CAS  Article  Google Scholar 

  12. 12.

    Honegger, H.-W., Teschauer, W., Garcia-Scheible, I. (1988) Bursicon in the prothoracic region of crickets. Symposia Biologica Hungarica 36, 329–340.

    CAS  Google Scholar 

  13. 13.

    Honegger, H. W., Seibel, B., Kaltenhauser, U., Bräunig, P. (1992) Expression of bursicon-like activity during embryogenesis of the locust Schistocerca gregaria. J. Insect Physiol. 38, 981–986.

    CAS  Article  Google Scholar 

  14. 14.

    Honegger, H. W., Market, D., Pierce, L. A., Dewey, E. M., Kostron, B., Wilson, M., Choi, D., Klukas, K. A., Mesce, K. A. (2002) Cellular localization of bursicon using antisera against partial peptide sequences of this insect cuticle-sclerotizing neurohormone. J. Comp. Neurol. 452, 163–177.

    CAS  Article  Google Scholar 

  15. 15.

    Kaltenhauser, U., Kellermann, J., Andersson, K., Lottspeich, F., Honegger, H.-W. (1995) Purification and partial characterization of bursicon, a cuticle sclerotizing neuropeptide in insects, from Tenebrio molitor. Insect Biochem. Mol. Biol. 25, 525–533.

    CAS  Google Scholar 

  16. 16.

    Kostron, B. (1997) Bursicon, das Sklerotisierungshormon bei Insekten: Neue Aspekte der Aufreinigung aus dem Nervensystem der Schabe Periplaneta americana. Ph. D. thesis, Technical University Munich.

  17. 17.

    Kostron, B., Marquardt, K., Kaltenhauser, U., Honegger, H.-W. (1995) Bursicon, the cuticle sclerotizing hormone-comparison of its molecular mass in different insects. J. Insect Physiol. 41, 1045–1053.

    CAS  Article  Google Scholar 

  18. 18.

    Kostron, B., Kaltenhauser, U., Seibel, B., Bräunig, P., Honegger, H.-W. (1996) Localization of bursicon in CCAP-immunoreactive cells in the thoracic ganglia of the cricket Gryllus bimaculatus. J. Exp. Biol. 199, 367–377.

    CAS  PubMed  Google Scholar 

  19. 19.

    Kostron, B., Market, D., Kellermann, J., Carter, C. E., Honegger, H.-W. (1999) Antisera against Periplaneta americana Cu,Zn-superoxide dismutase (SOD): separation of the neurohormone bursicon from SOD, and immunodetection of SOD in the central nervous system. Insect Biochem. Mol. Biol. 29, 861–871.

    CAS  Article  Google Scholar 

  20. 20.

    Mills, R. R., Lake, C. R. (1966) Hormonal control of tanning in the American cockroach–IV. Preliminary purification of the hormone. J. Insect Physiol. 12, 275–280.

    CAS  Article  Google Scholar 

  21. 21.

    Park, J., Schroeder, A. J., Helfrich-Förster, C., Jackson, F. R., Ewer, J. (2003) Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of behavior. Development 130, 2645–2656.

    CAS  Article  Google Scholar 

  22. 22.

    Reynolds, S. E. (1977) Control of cuticle extensibility in the wings of adult Manduca at the time of eclosion: effects of eclosion hormone and bursicon. J. Exp. Biol. 70, 27–39.

    CAS  Google Scholar 

  23. 23.

    Reynolds, S. E., Taghert, P. H., Truman, J. W. (1979) Eclosion hormone and bursicon titers and the onset of hormonal responsiveness during the last day of adult development in Manduca sexta (L.). J. Exp. Biol. 78, 77–86.

    Google Scholar 

  24. 24.

    Riehle, M. A., Garczynski, S. F., Crim, J. W., Hill, C. A., Brown, M. R. (2002) Neuropeptides and peptide hormones in A. gambiae. Science 298, 172–175.

  25. 25.

    Taghert, P. H., Truman, J. W. (1982a) The distribution and molecular characteristics of the tanning hormone bursicon, in the tobacco hornworm Manduca sexta. J. Exp. Biol. 98, 373–383.

    CAS  Google Scholar 

  26. 26.

    Taghert, P. H., Truman, J. W. (1982b) Identification of the bursicon-containing neurones in abdominal ganglia of the tobacco hornworm, Manduca sexta. J. Exp. Biol. 98, 385–401.

    CAS  Google Scholar 

  27. 27.

    Truman, J. W. (1973) Physiology of insect ecdysis III. Relationship between the hormonal control of eclosion and of tanning in the tobacco hornworm, Manduca sexta. J. Exp. Biol. 58, 821–829.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H.-W. Honegger.

Additional information

Presented at the 10th ISIN Symposium on Invertebrate Neurobiology, July 5–9, 2003, Tihany, Hungary.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Honegger, HW., Dewey, E.M. & Kostron, B. From Bioassays to Drosophila Genetics: Strategies for Characterizing an Essential Insect Neurohormone, Bursicon. BIOLOGIA FUTURA 55, 91–102 (2004). https://doi.org/10.1556/ABiol.55.2004.1-4.11

Download citation

Keywords

  • Insect cuticle
  • neuropeptide
  • protein purification
  • ecdysis
  • immunocytochemistry