The Molecular Mechanisms of Cellular Tolerance to δ-Opioid Agonists
Abstract
Chronic treatment with δ-opioid agonists, similar to other agonist drugs, causes tolerance. Tolerance is a complex adaptation process that consists of multiple, cellular and neural-system adaptations. Cellular tolerance to δ-opioid agonists involves feedback-regulation of the function, concentration, and localization of the δ-opioid receptors (receptor desensitization) as well as of intracellular effectors (functional desensitization). We are using a recombinant Chinese hamster ovary cell line expressing the human δ-opioid receptors (hDOR/CHO) to investigate the molecular mechanisms of cellular tolerance We found that the structurally distinct δ-opioid agonists mediate receptor down-regulation by different mechanisms. Thus, truncation of the last 35 C-terminal amino acids of the hDOR completely abolished DPDPE, but not SNC 80-mediated receptor down-regulation. In addition, down-regulation of the wild type-, and the truncated hDORs exhibited different inhibitor sensitivity-profile. Chronic δ-opioid agonist treatment also causes functional desensitization of forskolin-stimulated cAMP formation and cAMP overshoot in the hDOR/CHO cells. We have demonstrated that chronic SNC 80 treatment also causes concurrent phosphorylation of the adenylyl cyclase (AC) VI isoenzyme hDOR/CHO cells. Both AC superactivation and AC VI phosphorylation were SNC 80 dose-dependent, naltrindole-sensitive, and exhibited similar time course-, and protein kinase inhibitor-sensitivity profile. We hypothesize that phosphorylation of AC VI plays an important role in δ-opioid agonist-mediated AC superactivation in hDOR/CHO cells.
Keywords
Human δ-opioid receptor cellular tolerance receptor down-regulation adenylyl cyclase superactivation adenylyl cyclase phosphorylationPreview
Unable to display preview. Download preview PDF.
References
- 1.Afify, E. A., Law, P. Y., Riedl, M., Elde, R., Loh, H. H. (1998) Role of carboxyl terminus of μ and δ opioid receptor in agonist-induced down-regulation. Mol. Brain Res. 54, 24–34.PubMedGoogle Scholar
- 2.Ammer, H., Schulz, R. (1997) Enhanced stimulatory adenylyl cyclase signaling during opioid dependence is associated with a reduction in palmitoylated Gsα. Mol. Pharmacol. 52, 993–999.PubMedGoogle Scholar
- 3.Bayewitch, M. L., Nevo, I., Avidor-Reiss, T., Levy, R., Simmonds, W. F., Vogel, Z. (2000) Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of Gi/o-coupled receptors: Changes in detergent solubility are in correlation with onset of adenylyl cyclase superac-tivation. Mol. Pharmacol. 57, 820–825.PubMedGoogle Scholar
- 4.Belcheva, M. M., Szűcs, M., Wang, D., Sadee, W., Coscia, C. J. (2001) Mu opioid receptor-mediated ERK activation involves calmodulin dependent EGF receptor transactivation. J. Biol. Chem. 276, 33847–33853.PubMedGoogle Scholar
- 5.Belcheva, M. M., Coscia, C. J. (2002) Diversity of G protein-coupled receptor signaling pathways to ERK/MAP kinase. Neurosignals 11, 34–44.PubMedPubMedCentralGoogle Scholar
- 6.Bohm, S. K., Grady, E. F., Bunett, N. W. (1997) Regulatory mechanisms that modulate signaling by G protein-coupled receptors. Biochem. J. 322, 1–35.PubMedPubMedCentralGoogle Scholar
- 7.Chakrabarti, S., Wang, L., Tang, W.-J., Gintzler, A. R. (1998) Chronic morphine augments adenylyl cyclase phosphorylation: relevance to altered signaling during tolerance/dependence. Mol. Pharmacol. 54, 949–953.PubMedGoogle Scholar
- 8.Chaturvedi, K., Bandari, P., Chinen, N., Howells, R. D. (2001) Proteasome involvement in agonist-induced down-regulation of the μ and δ-opioid receptors. J. Biol. Chem. 276, 12345–12352.PubMedGoogle Scholar
- 9.Cvejic, S., Trapaidze, N., Cyr, C., Devi, L. A. (1996) Thr353, located within the COOH-terminal tail of the δ opiate receptor, is involved in receptor down-regulation. J. Biol. Chem. 271, 4073–4079.PubMedGoogle Scholar
- 10.Crain, S. M., Shen, S.-F. (1998) Modulation of opioid analgesia, tolerance and dependence by Gs-coupled, GM1 ganglioside-regulated opioid receptor functions. Trends Pharmacol. Sci. 19, 358–365.PubMedGoogle Scholar
- 11.Cussack, D., Newman- Tancredi, A., Pasteau, V., Millan, M. J. (1999) Human dopamine D3 receptors mediate MAP kinase activation via PI-3-kinase and an atypical protein kinase C dependent mechanism. Mol. Pharmacol. 56, 1025–1030.Google Scholar
- 12.Fukuda, K., Kato, S., Morikawa, H., Shoda, T., Mori, K. (1996) Functional coupling of δ, μ, and K-opioid receptors to MAP kinase and arachidonate release in Chinese hamster ovary cells. J. Neurochem. 67, 1309–1316.PubMedGoogle Scholar
- 13.Hicke, L. (1997) Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. The FASEB J. 11, 1215–1234.PubMedGoogle Scholar
- 14.Hosohata, Y., Varga, E. V., Stropova, D., Li, X., Knapp, R. J., Hruby, V. J., Rice, K. C., Nagase, H., Roeske, W. R., Yamamura, H. I. (2001) Mutation W284L of the human delta opioid receptor reveals agonist specific receptor conformations for G protein activation. Life Sci. 68, 22–33, 2001.Google Scholar
- 15.Kieffer, B. L., Evans, C. J. (2002) Opioid tolerance - in search of the holy grail. Cell 108, 587–590.PubMedGoogle Scholar
- 16.Knapp, R. J., Malatynska, E., Fang, L., Li, X., Babin, E., Nguyen, M., Santoro, G., Varga, E. V, Hruby, V J., Roeske, W. R., Yamamura, H. I. (1994) Identification of a human delta opioid receptor: cloning and expression. Life Sci. 54, PL463–465.PubMedGoogle Scholar
- 17.Kramer, H. K., Simon, E. J. (1999) Role of protein kinase C in agonist-induced μ-opioid receptor down-regulation: II. Activation and involvement of the α, ε and ξ isoforms of PKC. J. Neurochem. 72, 594–604.PubMedGoogle Scholar
- 18.Law, P.-Y, Louie, A. K., Loh, H. H. (1985) Effect of pertussis toxin treatment on the down-regulation of opiate receptors in neuroblastoma x glioma NG108-15 hybrid cells. J. Biol. Chem. 260, 14818–14822.PubMedGoogle Scholar
- 19.Law, P.-Y, Loh, H. H. (1993) Delta opioid receptor activates cAMP phosphodiesterase activities in neuroblastoma x glioma NG108-15 hybrid cells. Mol. Pharmacol. 43, 684–693.PubMedGoogle Scholar
- 20.Law, P.-Y, Wong, Y. H., Loh, H. H. (1999) Mutational analysis of the structure and function of opioid receptors. Biopolymers 51, 440–457.PubMedGoogle Scholar
- 21.Maestri-El Kouhen, O., Wang, G., Solberg, J., Erickson, L. J., Law, P.-Y., Loh, H. H. (2000) Hierarchical phosphorylation of δ-opioid receptor regulates agonist-induced receptor desensitization and internalization. J. Biol. Chem. 275, 36659–36664.PubMedPubMedCentralGoogle Scholar
- 22.Malatynska, E., Wang, Y., Knapp, R. J., Waite, S., Calderon, S., Rice, K., Hruby, V. J., Yamamura, H. I., Roeske, W. R. (1996) Human delta opioid receptor: Functional studies on stably transfected Chinese hamster ovary cells after acute and chronic treatment with the selective nonpeptidic agonist SNC-80. J. Pharmacol. Exp. Ther. 278, 1083–1094.Google Scholar
- 23.Mellman, I. (1996) Endocytosis and molecular sorting. Ann. Rev. Cell. Dev. Biol. 12, 575–592.Google Scholar
- 24.Menard, L., Ferguson, S. S. G., Zhang, J., Lin, F.-T., Lefkowitz, R. J., Caron, M. G., Barak, L. S. (1997) Synergistic regulation of ß2-adrenergic receptor sequestration: Intracellular complement of ß-adrenergic receptor kinase and ß-arrestin determine kinetics of internalization. Mol. Pharmacol. 51, 800–808.PubMedGoogle Scholar
- 25.Morris, A. J., Malbon, C. C. (1999) Physiological regulation of G protein linked signaling. Physiol. Rev. 79, 1373–1430.PubMedGoogle Scholar
- 26.Murray, S. R., Evans, C. J., von Zastrow, M. (1998) Phosphorylation is not required for dynamin-dependent endocytosis of a truncated mutant opioid receptor. J. Biol. Chem. 273, 24987–24996.PubMedGoogle Scholar
- 27.Okura, T., Cowell, S. M., Varga, E. V., Burkey, T. H., Roeske, W. R., Hruby, V. J., Yamamura, H. I. (2000) Differential down-regulation of the human delta-opioid receptor by SNC80 and [D-Pen2, D-Pen5]enkephalin. Eur. J. Pharmacol. 387, R11–13.PubMedGoogle Scholar
- 28.Okura, T., Varga, E. V., Hosohata, Y, Navratilova, E., Cowell, S. M., Rice, K., Nagase, H., Hruby, V. J., Roeske, W. R., Yamamura, H. I. (2003) Agonist-specific down-regulation of the human delta-opioid receptor. Eur J. Pharmacol. 459, 9–16.PubMedGoogle Scholar
- 29.Pei, G., Kieffer, B. L., Lefkowitz, R. J., Freedman, R. D. (1995) Agonist-dependent phosphorylation of the mouse 5-opioid receptor: Involvement of G protein-coupled receptor kinases but not protein kinase C. Mol. Pharmacol. 48, 173–178.PubMedGoogle Scholar
- 30.Quock, R. M., Burkey, T. H., Varga, E. V, Hosohata, Y, Hosohata, K., Cowell, S. M., Slate, C. A., Ehlert, F. J., Roeske, W. R., Yamamura, H. I. (1999) The 5-opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy. Pharmacol. Rev. 51, 503–532.PubMedGoogle Scholar
- 31.Rapaka, R. S., Porreca, F. (1991) Development of delta opioid peptides as non-addicting analgesics. Pharm. Res. 8, 1–8.PubMedGoogle Scholar
- 32.Rivera, M., Ginzler, A. R. (1998) Differential effect of chronic morphine on mRNA encoding adeny-lyl cyclase isoforms: relevance to physiological sequela of tolerance/dependence. Mol. Brain Res. 54, 165–169.PubMedGoogle Scholar
- 33.Rubenzik, M., Varga, E. V, Stropova, D., Roeske, W. R, Yamamura, H. I. (2001) Expression of α-transducin in Chinese hamster ovary cells stably transfected with the human 5-opioid receptor attenuates agonist-induced adenylyl cyclase superactivation. Mol. Pharmacol. 60, 1076–1082.PubMedGoogle Scholar
- 34.Sharma, S. K., Klee, W. A., Nirenberg, M. (1975) Dual regulation of adenylyl cyclase accounts for narcotic dependence and tolerance. Proc. Natl. Acad. Sci. USA 72, 3092–3096.PubMedGoogle Scholar
- 35.Tan, C. M., Kelvin, D. J., Litchfield, D. W., Ferguson, S. S. G., Feldman, R. D. (2001) Tyrosine kinase-mediated serine phosphorylation of adenylyl cyclase. Biochemistry 40, 1702–1709.PubMedGoogle Scholar
- 36.Thomas, J. M., Hoffman, B. B. (1996) Isoform-specific sensitization of adenylyl cyclase activity by prior activation of inhibitory receptors: Role of ßy subunits in transducing enhanced activity of the type VI isoform. Mol. Pharmacol. 49, 907–914.PubMedGoogle Scholar
- 37.Trapaidze, N., Keith, D. E., Cvejic, S., Evans, C. J., Devi, L. A. (1996) Sequestration of the 5-opioid receptor, role of the C terminus in agonist-mediated internalization. J. Biol. Chem. 271, 29279–29286.PubMedPubMedCentralGoogle Scholar
- 38.Vanderah, T. W., Ossipov, M. H., Lai, J., Malan, T. P. Jr., Porreca, F. (2001) Mechanisms of opioid-induced pain and antinociceptive tolerance: descending facilitation and spinal dynorphin. Pain 92, 5–9.PubMedGoogle Scholar
- 39.van Vliet, B. J., DeVries, T. J., Wardeh, G., Mulder, A. H., Schoffelmeer, A. N. M. (1991) ώ-Opioid receptor-regulated adenylate cyclase activity in primary cultures of rat striatal neurons upon chronic morphine exposure. Eur. J. Pharmacol. 208, 105–111.PubMedGoogle Scholar
- 40.Varga, E. V., Stropova, D., Rubenzik, M. K., Wang, M., Landsman, R. S., Roeske, W. R., Yamamura, H. I. (1998) Identification of adenylyl cyclase isoenzymes in CHO and B82 cells. Eur. J. Pharmacol. 348, R1–2.PubMedGoogle Scholar
- 41.Varga, E. V., Stropova, D., Rubenzik, M. K., Waite, S. L., Roeske, W. R., Yamamura, H. I. (1999) Phosphorylation of adenylyl cyclase VI upon chronic δ-opioid receptor stimulation. Eur. J. Pharmacol. 364, R1–2.PubMedGoogle Scholar
- 42.Varga, E. V., Rubenzik M. K., Grife, V., Sugiyama, M., Stropova, D., Roeske, W. R., Yamamura, H. I. (2002) Involvement of Raf-1 in chronic delta-opioid receptor agonist-mediated adenylyl cyclase superactivation. Eur. J. Pharmacol. 451, 101–103.PubMedGoogle Scholar
- 43.Varga, E. V., Rubenzik, M. K., Stropova, D., Sugiyama, M., Grife, V., Hruby, V. J., Rice, K. C., Roeske, W. R., Yamamura, H. I. (2003) Converging protein kinase pathways mediate adenylyl cyclase superactivation upon chronic δ-opioid agonist treatment, J. Pharmacol. Exp. Ther. (in press).Google Scholar
- 44.Whistler, J. L., Chuang, H.-H., Chu, P., Jan, L.-Y., von Zastrow, M. (1999) Functional dissociation of ώ opioid receptor signaling and endocytosis: Implications for the biology of opiate tolerance and addiction. Neuron 23, 737–749.PubMedGoogle Scholar
- 45.Williams, J. T., Christie, M. J., Manzoni, O. (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81, 299–343.PubMedGoogle Scholar
- 46.Zhao, J., Pei, G., Huang, Y. L., Zhong, F. M., Ma, L. (1997) Carboxyl terminus of delta opioid receptor is required for agonist-dependent receptor phosphorylation. Biochem. Biophys. Res. Commun. 238, 71–76.PubMedGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.