Advertisement

Acta Biologica Hungarica

, Volume 53, Issue 4, pp 485–493 | Cite as

Effect of Sub-Lethal Concentrations of Aluminium on the Filtration Activity of the Freshwater Mussel Anodonta Cygnea L. at Neutral pH

  • Enikő KádárEmail author
  • J. Salánki
  • J. Powell
  • K. N. White
  • Catherine R. McCrohan
Article

Abstract

Significant amounts of aluminium (Al) are commonly present in rivers and lakes, largely in particulate form in neutral waters. Freshwater bivalves, as filter feeders are therefore exposed to both particulate and dissolved metal and are potentially vulnerable to Al.

The effect of Al on filtering behaviour of the freshwater mussel Anodonta cygnea L. was investigated during short (1 hour) and long-term (15 days) exposure to environmentally relevant concentrations (250 and 500 μg l–1) at neutral pH. Water flow through the outflow siphon was monitored as an indicator of pumping capacity.

Short-term (1 hour) exposure to 500 μg l–1 added Al produced an irreversible decrease in the duration of filtering periods, presumably as an avoidance response to the toxicant. One-hour exposure 250 μg l–1 Al had no detectable effect. When mussels were exposed to 250 or 500 μg l–1 added Al for 15 days, siphon activity measured in days 11–15 of exposure was inhibited by 50% and 65%, respectively, compared to pre-exposure levels. Recovery occurred following transfer of mussels to uncontaminated water. Interaction between Al and freshwater bivalves at neutral pH may affect both the performance of the mussels and the chemical speciation of the metal in the natural environment.

Keywords

Aluminium siphon activity filtration bivalve Anodonta cygnea L. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balogh, K.V., Vörös, L. (1997) High bacterial production in hypertrophic shallow reservoirs rich in humic substances. Hydrobiologia 342, 63–70.CrossRefGoogle Scholar
  2. 2.
    Burden, T. J., Powell, J. J., Taylor, P. D., Thompson, R. P. H. (1995) Optimal accuracy, precision and sensitivity of inductively coupled plasma optical emission spectrometry: bioanalysis of aluminium. J. Anal. Atom. Spectrom. 10, 259–266.CrossRefGoogle Scholar
  3. 3.
    Burrows, W. D. (1977) Aquatic aluminium: chemistry, toxicology, and environmental prevalence. CRC. Critical Reviews in Environmental Control 7, 167–216.CrossRefGoogle Scholar
  4. 4.
    Campbell, M. M., White, K. N., Jugdaohsingh, R., Powell, J. J., McCrohan, C. R. (2000) Effect of aluminum and silicic acid on the behaviour of the freshwater snai. Lymnaea stagnalis. Can. J. Fish. Aquat. Sci. 57, 1151–1159.CrossRefGoogle Scholar
  5. 5.
    Depledge, M. H., Aagaard, A., Gyorkos, P. (1995) Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers. Mar. Pollut. Bull. 3, 19–27.CrossRefGoogle Scholar
  6. 6.
    Dixon, E., Gardner, M. (1998) Reactive aluminium in UK surface waters. Chem. Spec. Bioavail. 10, 11–17.CrossRefGoogle Scholar
  7. 7.
    Driscoll, T. C., Schecher, W. D. (1988) Aluminium in the environment. In: Sigel, H. (ed.). Metal Ions in Biological Systems. Vol. 24. Marcel Dekker, New York, pp.74–104.Google Scholar
  8. 8.
    Elangovan, R., White, K. N., McCrohan, C. (1997) Bioaccumulation of aluminium in the freshwater snai. Lymnaea stagnalis at neutral pH. Environ. Pollut. 96, 29–33.CrossRefGoogle Scholar
  9. 9.
    Exley, C., Wicks, A. J., Hubert, R. B., Birchall, J. D. (1996) Kinetic constraints in acute aluminium toxicity in rainbow trout (Onkorhyncus mykiss). J. Theor. Biol. 179, 25–31.CrossRefGoogle Scholar
  10. 10.
    Guo, L., Hunt, B. J., Santschi, P. H., Ray, S. M. (2001) Effect of dissolved organic matter on the uptake of trace metals by american oysters. Environ. Sci. Technol. 35, 885–893.CrossRefGoogle Scholar
  11. 11.
    Harris, W. R., Berthon, G., Day, J. P., Exley, C., Flaten, T. P., Forbes, W. F., Kiss, T., Orvig, C., Zatta, P. F. (1996) Speciation of Al in biological systems. J. Toxicol. Environ. Health 48, 543–568.CrossRefGoogle Scholar
  12. 12.
    Horridge, G. A. (1958) Transmission of excitation through the ganglia o. Mya (Lamellibranchiata). J. Physiol. 143, 553–572.CrossRefGoogle Scholar
  13. 13.
    Jackson, M. L. (1983) Aluminium of acid soils in the food chain and senility. Sci. Total Environ. 28, 269–276.CrossRefGoogle Scholar
  14. 14.
    Jugdaohsingh, R., Campbell, M. M., Thompson, R. P. H., McCrohan, C. R., White, K. N., Powell, J. J. (1998) Mucus secretion by the freshwater snai. Lymnaea stagnalis limits aluminum concentration of the aqueous environment. Environ. Sci. Technol. 32, 2591–2595.CrossRefGoogle Scholar
  15. 15.
    Kádár, E., Salánki, J., Jugdaohsingh, R., Powell, J. J., McCrohan, C. C., White, K. N. (2001) Avoidance responses to aluminium in the freshwater bivalv. Anodonta cygnea. Aquat Toxicol. 55, 137–148.CrossRefGoogle Scholar
  16. 16.
    Kontreczky, Cs., Farkas, A., Nemcsók, J., Salánki, J. (1997) Short and long term effects of deltamethrin on filtering activity of the freshwater mussel (Anodonta cygnea L.). Ecotox. Environ. Saf. 38, 195–199.CrossRefGoogle Scholar
  17. 17.
    Lee, B. G., Luoma, S. N. (1998) Influence of microalgal biomass on absorption efficiency of Cd, Cr, and Zn by two bivalves from San Francisco Bay. Limnol. Oceanogr. 43, 1455–1466.CrossRefGoogle Scholar
  18. 18.
    Lukacsovics, F., Salánki, J. (1968) Data to the chemical sensitivity of freshwater mussel (Anodonta cygnea L.). Annal. Inst. Biol. (Tihany). 35, 25–34.Google Scholar
  19. 19.
    Martin, R. B. (1992) Aluminium speciation in biology. In: Kerr, D. N. S., Birchall J. D. (eds) Symposium on Aluminium in Medicine and Biology. John Wiley and Sons, London, p. 156.Google Scholar
  20. 20.
    Nalepa, T. F., Schloesser, D. W. (1993). Zebra Mussels: Biology, Impacts and Control. In: Nalepa, T. F., Schloesser, D. W. (eds) Lewis Publishers. Boca Raton, pp. 279–299.Google Scholar
  21. 21.
    Nieborer, E., Richardson, D. H. S. (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ. Pollut. 1, 3–26.CrossRefGoogle Scholar
  22. 22.
    Roditi, H. A., Fisher, N. S., Sanudo-Wilhelmy, S. A. (2000) Uptake of dissolved organic carbon and trace elements by zebra mussels. Nature 407, 78–80.CrossRefGoogle Scholar
  23. 23.
    Salánki, J. (1992) Heavy metal induced behaviour modulation in mussels: possible neural correlates. Acta. Biol. Hung. 43, 375–386.PubMedGoogle Scholar
  24. 24.
    Steel, R. D. G., Torrie, J. H. (1980). Principles and Procedures of Statistics–A biometrical approach. McGraw-Hill, London.Google Scholar
  25. 25.
    Truscott, R., McCrohan, C. R., Bailey, S. E. R., White, K. N. (1995) Effect of aluminum and lead on activity in the fresh-water pond snai. Lymnaea stagnalis. Can. J. Fish. Aquat. Sci. 52, 1623–1629.CrossRefGoogle Scholar
  26. 26.
    Turpajev, T. M., Nechaeva, M. V., Salánki, J., Veró, M. (1991) Method for recording water outflow from the exhalant siphon of bivalves. J. General Biol. (Moscow. 52, 728–730. (in Russian).Google Scholar
  27. 27.
    Wang, D. C., Couillard, Y. (1999) Changes in sub-cellular metal partitioning in the gills of freshwater bivalve. (Pyganodon grandis) living along an environmental cadmium gradient. Can. J. Fish. Aquat. Sci. 56, 774–784.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2002

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Enikő Kádár
    • 1
    • 2
    Email author
  • J. Salánki
    • 2
  • J. Powell
    • 3
  • K. N. White
    • 1
  • Catherine R. McCrohan
    • 1
  1. 1.School of Biological SciencesUniversity of ManchesterManchesterUK
  2. 2.Balaton Limnological Research Institute of the Hungarian Academy of SciencesTihanyHungary
  3. 3.The Rayne Institute, St. Thomas’ HospitalGastrointestinal LaboratoryLondonUK

Personalised recommendations