Advertisement

Acta Biologica Hungarica

, Volume 53, Issue 3, pp 325–334 | Cite as

Nuclear Translocation of p90Rsk and Phosphorylation of CREB is Induced by Ionomycin in a Ras-Independent Manner in PC12 Cells

  • G. Boglári
  • J. SzeberényiEmail author
Article

Abstract

In the present study we examined the possible role of p90Rsk in pathways leading to neuronal differentiation of PC12 cells induced by nerve growth factor (NGF) and the calcium ionophore ionomycin. PC12-M17 cells, expressing a dominant inhibitory Ras protein, do not undergo neuronal differentiation in response to NGF like wild-type PC12 cells, but exhibit neurite outgrowth when treated with NGF in combination with ionomycin. However, the blockade of Ras in these cells results in failure of activation of mitogen-activated protein kinase (MAPK)/extracellular signal regulation kinase (ERK) (MEK) and ERK activation as well, therefore kinases other than those of the ERK pathway might play a role in the induction of neuronal differentiation in this case. Here we show that p90Rsk translocates to the nucleus in response to ionomycin in both wild-type PC12 and PC12-M17 cells, and this spatial distribution is followed by increased phosphorylation of the cAMP response element binding protein (CREB). Since CREB is believed to be the transcription factor that can integrate Ca2+, growth factor and cAMP-induced signals, we suggest that p90Rsk may be one of the kinases which is able to replace ERKs under certain circumstances, thereby participating in Ras-independent neuronal differentiation induced by NGF plus ionomycin.

Keywords

PC12 cells neuronal differentiation Ras p90Rsk CREB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blenis, J., Kuo, C. J., Erikson, R. L. (1987) Identification of a ribosomal protein S6 kinase regulated by transformation and growth promotion stimuli. J. Biol. Chem. 262, 14373–14376.PubMedGoogle Scholar
  2. 2.
    Blenis, J. (1993) Signal transduction via the MAP kinases: proceed at your own Rsk. Proc. Natl. Acad. Sci. USA 90, 5889–5892.CrossRefGoogle Scholar
  3. 3.
    Bhatt, R. R., Ferrell, J. E. Jr. (2000) Cloning and characterization of Xenopus Rsk2, the predominant Rsk isozyme in oocytes and eggs. J. Biol. Chem. 275, 32983–32990.CrossRefGoogle Scholar
  4. 4.
    Bonni, A., Brunet, A., West, A. E., Datta, S. R., Takasu M. A., Greenberg, M. E. (1999) Cell survival promoted by the Ras-MAPK signaling pathways via transcription-dependent and -independent mechanisms. Science 286, 1358–1362.CrossRefGoogle Scholar
  5. 5.
    Bruning, J. C., Gillette J. A., Zhao, Y., Bjorbaeck, C., Kotzka, J., Knebel, B., Hanstein, B., Lingohr, P., Moller, D. E., Krone, W., Kahn, C. R., Muller-Wiel, B. (2000) Ribosomal subunit kinase-2 is required for growth factor-stimulated transcription of the c-Fos gene. Proc. Natl. Acad. Sci. USA 97, 2462–2467.CrossRefGoogle Scholar
  6. 6.
    Chen, R. H., Blenis, J. (1990) Identification of Xenopus S6 protein kinase homologs in somatic cells: phosphorylation and activation during initiation of cell proliferation. Mol. Cell. Biol. 10, 3204–3215.CrossRefGoogle Scholar
  7. 7.
    Chen, R. H., Chung, J., Blenis, J. (1991) Regulation of p90Rsk phosphorylation and S6 phospho-transferase activity in Swiss 3T3 cells by growth factor-, phorbol ester-, and cyclic AMP-mediated signal transduction. Mol. Cell. Biol. 11, 1861–1867.CrossRefGoogle Scholar
  8. 8.
    Chen, R. H., Sarnecki, Ch., Blenis, J. (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915–923.CrossRefGoogle Scholar
  9. 9.
    Corbit, K. C., Foster, D. A., Rich Rosner, M. (1999) Protein kinase Cd mediates neurogenic but not mitogenic activation of mitogen-activated protein kinase in neuronal cells. Mol. Cell. Biol. 19, 4209–4218.CrossRefGoogle Scholar
  10. 10.
    Douville, E., Downward, J. (1997) EGF induced Sos phosphorylation in PC12 cells involves p90Rsk2. Oncogene 15, 373–383.CrossRefGoogle Scholar
  11. 11.
    Erikson, E., Maller, J. L. (1986) Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J. Biol. Chem. 261, 350–355.PubMedGoogle Scholar
  12. 12.
    Frodin, M., Gammeltoft, S. (1999) Role and regulation of 90 kDa ribosomal S6 kinase in transduction. Mol. Cell. Endocrinol. 151, 65–77.CrossRefGoogle Scholar
  13. 13.
    Gotoh, I., Nishida, E., Yamashita, T., Hoshi, M., Kawakami, M., Sakai, H. (1990) Microtubule-asso-ciated protein kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Eur. J. Biochem. 193, 661–669.CrossRefGoogle Scholar
  14. 14.
    Greene, L. A., Tischler, A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73, 2424–2428.CrossRefGoogle Scholar
  15. 15.
    Gross, S. D., Schwab, M. S., Taieb, F. E., Lewellyn, A. L., Qian, Y. W., Maller, J. L. (2000) The critical role of the MAP kinase pathways in meiosis II in Xenopus oocytes is mediated by p90Rsk. Curr. Biol. 10, 430–438.CrossRefGoogle Scholar
  16. 16.
    Hansen, T. v O., Rehfeld, J. F., Nielsen, F. C. (2000) Cyclic AMP-induced neuronal differentiation via activation of p38 mitogen-activated protein kinase. J. Neurochem. 75, 1870–1877.CrossRefGoogle Scholar
  17. 17.
    Hsiao, K. M., Chou, S. Y., Shih, S. J., Ferrell, J. E. Jr. (1994) Evidence that inactive p42 MAP kinase and inactive Rsk exist as a heterodimer in vivo. Proc. Natl. Acad. Sci. USA 91, 5480–5484.CrossRefGoogle Scholar
  18. 18.
    Impey, S., Obrietan, K., Wong, S. T., Poser, S., Yano, S., Wayman, G., Deloulme, J. C., Chan, G., Storm, D. R. (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883.CrossRefGoogle Scholar
  19. 19.
    Marshall, C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase action. Cell 80, 179–185.CrossRefGoogle Scholar
  20. 20.
    Merienne, K., Jacquot, S., Zeniou, M., Pannetier, S., Sassone-Corsi, P., Hanauer, A. (2000) Action of Rsk by UV-light: phosphorylation dynamics and the involvement of the MAPK pathway. Oncogene 19, 4221–4229.CrossRefGoogle Scholar
  21. 21.
    Miranti, C. K., Ginty, D. D., Huand, G., Chatila, T., Greenberg, M. E. (1995) Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol. Cell. Biol. 15, 3672–3684.CrossRefGoogle Scholar
  22. 22.
    Moller, D. E., Xia, C. H., Tang, W., Zhu, A. X., Jakubowski, M. (1994) Human Rsk isoforms: cloning and characterization of tissue-specific expression. Am. J. Physiol. 266, 351–359.CrossRefGoogle Scholar
  23. 23.
    Nguyen, T. T., Scimeca, J. C., Filloux, C., Peraldi, P., Carpentier, J. L., van Obberghen, E. (1993) Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. J. Biol. Chem 268, 9803–9810.PubMedGoogle Scholar
  24. 24.
    Pap, M., Szeberényi, J. (1998) Differential Ras-dependence of gene induction by nerve growth factor and second messenger analogues in PC12 cells. Neurochem. Res. 23, 971–977.CrossRefGoogle Scholar
  25. 25.
    Sassone-Corsi, P., Mizzen, C. A., Cheung, P., Crosio, C., Monaco, L., Jacquot, S., Hanauer, A., Allis, C. D. (1999) Requirement of Rsk2 for epidermal growth factor-activated phosphorylation of histone H3. Science 286, 886–891.CrossRefGoogle Scholar
  26. 26.
    Shimamura, A., Ballif, B. A., Richards, S. A., Blenis, J. (2000) Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr. Biol. 10, 127–135.CrossRefGoogle Scholar
  27. 27.
    Szeberényi, J., Cai, H., Cooper, G. M. (1990) Effect of a dominant inhibitory Ha-ras mutation on neuronal differentiation of PC12 cells. Mol. Cell. Biol 10, 5324–5332.CrossRefGoogle Scholar
  28. 28.
    Szeberényi, J., Erhardt, P., Cai, H., Cooper, G. M. (1992) Role of Ras in signal transduction from the NGF receptor: relationship to protein kinase C, calcium and cyclic AMP. Oncogene 7, 2105–2113.PubMedGoogle Scholar
  29. 29.
    Szeberényi, J., Erhardt, P. (1994) Cellular components of nerve growth factor signaling. Biochim. Biophys. Acta 1222, 187–202.CrossRefGoogle Scholar
  30. 30.
    Takahashi, E., Abe, J., Berk, B. C. (1997) Angiotensin II stimulates p90Rsk in vascular smooth muscle cells. A potential Na+-H+ exchanger kinase. Circ. Res. 81, 268–273.CrossRefGoogle Scholar
  31. 31.
    Traverse, S., Gomez, N., Paterson, H., Marshall, C. J., Cohen, P. (1992) Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Biochem. J. 288, 351–355.CrossRefGoogle Scholar
  32. 32.
    Wong, E. V., Schaefer, A. W., Landreth, G., Lemmon, V. (1996) Involvement of p90Rsk in neurite outgrowth mediated by the adhesion molecule L1. J. Biol. Chem. 271, 18217–18223.CrossRefGoogle Scholar
  33. 33.
    Wood, K. W., Sarnecki, Ch., Roberts, T. M., Blenis, J. (1992) ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1 and RSK. Cell 68, 1041–1050.CrossRefGoogle Scholar
  34. 34.
    Xing, J., Kornhauser, J. M., Xia, Z., Thiele, E. A., Greenberg, M. E. (1998) Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol. Cell. Biol. 18, 1945–1955.CrossRefGoogle Scholar
  35. 35.
    Xing, J., Ginty, D. D., Greenberg, M. E. (1996) Coupling of the Ras-MAPK pathway to gene activation by Rsk2, a growth factor-regulated CREB kinase. Science 273, 959–963.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2002

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Medical Biology, Faculty of MedicineUniversity of PécsPécsHungary

Personalised recommendations