Advertisement

Acta Biologica Hungarica

, Volume 53, Issue 3, pp 245–256 | Cite as

Concentration- and Time-Dependent Effect of Aminooxyacetic Acid on Cortical Epileptogenicity

  • Barbara Barna
  • A. Szász
  • T. Asztalos
  • Z. Szupera
  • L. Vécsei
  • Helmi Houtzager
  • Magdolna SzenteEmail author
Article

Abstract

In the present electrophysiological study the effect of aminooxyacetic acid (AOAA) on the cortical epileptogenicity, and on the basic electro-cortical activity was investigated in anesthetized rats.

AOAA did not induce spontaneous epileptiform discharges but modified the somato-sensory evoked responses and the cortical epileptogenicity (induced by 4-aminopyridine) in the same manner depending on its concentration. AOAA at low concentrations increased the amplitude of evoked responses and the ipsilateral manifestation of epileptiform activity, however, at high concentrations significantly suppressed both the evoked responses and the induction and expression of seizures discharges. The anti-convulsive effect of AOAA was time-dependent (reached its maximum after 2h AOAA pre-treatment) and reversible. AOAA at low concentrations probably increases the efficacy of the NMDA excitatory system and decreases GABA-synthesis, resulting neuronal hyperexcitation. However, AOAA at high concentrations can lead to an effective cortical inhibition through intra- and extracellular accumulation of GABA. The gradual GABA accumulation - up to a certain level - at the synapses could also explain the time-dependency of the anticonvulsive effect of AOAA.

Keywords

Aminooxyacetic acid anticonvulsive proconvulsive 4-AP-induced seizures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruton, C. J. (1988) The neuropathology of temporal lobe epilepsy, Oxford University Press.Google Scholar
  2. 2.
    Buzsáki, Gy., Traub, R. D. (1997) Physiological basis of EEG activity. In: Engel, J. Jr., Pedley, T. A. (eds) Epilepsy: A comprehensive textbook. Lippincott-Raven Publishers, Philadelphia.Google Scholar
  3. 3.
    Collins, R. C., Mehta, S. (1978) Effect of aminooxyacetic acid (AOAA) on focal penicillin seizures. Brain Res. 157, 311–320.CrossRefGoogle Scholar
  4. 4.
    DeVanzo, J. P., Matthews, R. J., Stafford, J. E. (1964) Studies on the mechanism of action of aminooxyacetic acid. I. Reversal of aminooxyacetic acid-induced convulsions by various agents. Tox. Appl. Pharmacol. 6, 388–395.CrossRefGoogle Scholar
  5. 5.
    Du, F., Eid, T., Schwarcz, R. (1998) Neuronal damage after the injection of aminooxyacetic acid into the rat entorhinal cortex: A silver impregnation study. Neuroscienc. 82, 1165–1178.CrossRefGoogle Scholar
  6. 6.
    Eid, T., Schwarcz, R., Ottersen, O. P. (1999) Ultrastructure and immunocytochemical distribution of GABA in layer III of the rat medial entorhinal cortex following aminooxyacetic acid-induced seizures. Exp. Brain Res. 125, 463–475.CrossRefGoogle Scholar
  7. 7.
    Foster, A. C., Vezzani, A., French, E. D., Schwarcz, R. (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 48, 273–278.CrossRefGoogle Scholar
  8. 8.
    Fukao, K., Momiyama, T., Ishihara, K., Ujihara, H., Fujita, Y., Taniyama, K., Serikawa, T., Sasa, M. (1998) Inhibition by gamma-aminobutyric acid system activation of epileptic seizures in spontaneously epileptic rats. Jpn. J. Pharmacol. 76, 387–396.CrossRefGoogle Scholar
  9. 9.
    Gupta, A., Wang, Y., Markram, H. (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Scienc. 287, 273–278.CrossRefGoogle Scholar
  10. 10.
    Hicks, T. P., Conti, F. (1996) Amino acids as the source of considerable excitation in cerebral cortex. Can. J. Physiol. Pharmacol. 74, 341–361.PubMedGoogle Scholar
  11. 11.
    Kozlowski, V. L. (1988) Experimental study of the antiepileptic activity of fenibut and its combinations with sodium valproate and aminooxyacetic acid. Farmakol. Toksikol. 51, 18–21.Google Scholar
  12. 12.
    Kuriyama, K., Roberts, E., Rubinstein, M. K. (1966) Elevation of gamma-aminobutyric acid in brain with amino-oxyacetic acid and susceptibility to convulsive seizures in mice: a quantitative re-evaluation. Biochem. Pharmacol. 15, 221–236.CrossRefGoogle Scholar
  13. 13.
    Le Gal, S., La Salle, G. (1980) Inhibition of kindling-induced generalized seizures by aminooxyacetic acid. Can. J. Physiol. Pharmacol. 58, 7–11.CrossRefGoogle Scholar
  14. 14.
    Löscher, W. (1986) Development of tolerance to the anticonvulsant effect of GABAmimetic drugs in genetically epilepsy-prone gerbils. Pharmacol. Biochem. Behav. 24, 1007–1013.CrossRefGoogle Scholar
  15. 15.
    Löscher, W., Hörstermann, D. (1994) Differential effects of vigabatrin, gamma-acetylenic GABA, aminooxyacetic acid and valproate on levels of various amino acids in rat brain regions and plasma. Naunyn. Schmiedebergs. Arch. Pharmacol. 349, 270–278.CrossRefGoogle Scholar
  16. 16.
    Löscher, W., Hönack, D., Gramer, M. (1989) The use of inhibitors of GABA-transaminase for the estimation of GABA turnover in various brain regions of rats: a re-evaluation of aminooxyacetic acid. J. Neurochem. 53, 1737–1750.CrossRefGoogle Scholar
  17. 17.
    McMaster, O. G., Du, F., French, E. D., Schwartz, R. (1991) Focal injection of aminooxyacetic acid produces seizures and lesions in rat hippocampus: evidence for mediation by NMDA receptors. Exp. Neurol. 113, 378–385.CrossRefGoogle Scholar
  18. 18.
    Minatogawa, Y., Noguchi, T., Kido, R. (1974) Kynurenine pyruvate transaminase in rat brain. J. Neurochem. 23, 271–272.CrossRefGoogle Scholar
  19. 19.
    Orrego, F., Miranda, R. (1976) Electrical induced release of (3H)GABA from neocortical thin slices. Effects of stimulus waveform and amino-oxyacetic acid. J. Neurochem. 26, 1033–1038.CrossRefGoogle Scholar
  20. 20.
    Pin, J. P., Bockaert, J. (1989) Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture. J. Neurosci. 9, 648–656.CrossRefGoogle Scholar
  21. 21.
    Scharfman, H. E., Goodman, J. H., Du, F., Schwarcz, R. (1998) Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. J. Neurophysiol. 80, 3031–3046.CrossRefGoogle Scholar
  22. 22.
    Snodgrass, S. R., Iverson, L. L. (1973) Effects of AOAA on (3H)GABA uptake by rat brain slices. J. Neurochem. 20, 431–439.CrossRefGoogle Scholar
  23. 23.
    Speciale, C., Wu, H. Q., Gramsbergen, J. B., Turski, W. A., Ungerstedt, U., Schwarcz, R. (1990) Determination of extracellular kynurenic acid in the striatum of unanaesthetized rats: effect of aminooxyacetic acid. Neurosci. Lett. 14, 198–203.CrossRefGoogle Scholar
  24. 24.
    Szente, M. B., Boda, B. (1994) Cellular mechanisms of neocortical secondary epileptogenesis. Brain Res. 648, 203–214.CrossRefGoogle Scholar
  25. 25.
    Szente, M. B., Pongrácz, F. (1979) Aminopyridine-induced seizure activity. EEG Clin. Neurophysiol. 46, 605–608.CrossRefGoogle Scholar
  26. 26.
    Thomson, J. L., Holmes, G. L., Taylor, G. W., Feldman, D. R. (1988) Effects of kynurenic acid on amygdaloid kindling in the rat. Epilepsy Res. 2, 302–308.CrossRefGoogle Scholar
  27. 27.
    Turski, W. A., Dziki, M., Urbanska, E., Calderazzo-Filho, L. S., Cavalheiro, E. A. (1991) Seizures induced by aminooxyacetic acid in mice: Pharmacological characteristics. Synaps. 7, 173–180.CrossRefGoogle Scholar
  28. 28.
    Turski, W. A., Dziki, M., Parada, J., Kleinrok, Z., Cavalheiro, E. A. (1992) Age dependency of the susceptibility of rats to aminooxyacetic acid seizures. Dev. Brain Res. 67, 137–144.CrossRefGoogle Scholar
  29. 29.
    Urbanska, E., Ikonomidou, C., Sielucka, M., Turski, W. A. (1991) Aminooxyacetic acid produces excitotoxic leisons in rat striatum. Synaps. 9, 129–135.CrossRefGoogle Scholar
  30. 30.
    Vécsei, L., Beal, F. M. (1992) Behavioural and pharmacological effects of centrally administrated aminooxyacetic acid in rats. Eur. J. Pharmacol. 220, 259–262.CrossRefGoogle Scholar
  31. 31.
    Wood, J. D., Russell, M. P., Kurylo, E., Newstead, J. D. (1979) Stability of synaptosomal GABA levels and their use in determining the in vivo effects of drugs: convulsant agents. J. Neurochem. 33, 61–68.CrossRefGoogle Scholar
  32. 32.
    Wood, J. D., Russell, M. P., Kurylo, E. (1980) The ψ-aminobutyrate content of nerve endings (synap-tosomes) in mice after the intramuscular injection of ψ-aminobutyrate-elevating agents: A possible role in anticonvulsant activity. J. Neurochem. 35, 125–130.CrossRefGoogle Scholar
  33. 33.
    Wuarin, J. P., Dudek, F. E. (1996) Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated rats. J. Neurosci. 16, 4438–4448.CrossRefGoogle Scholar
  34. 34.
    Zilberter, Y. (2000) Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurones in rat neocortex. J. Physiolog. 528, 489–496.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2002

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Barbara Barna
    • 1
  • A. Szász
    • 1
  • T. Asztalos
    • 2
  • Z. Szupera
    • 3
  • L. Vécsei
    • 3
  • Helmi Houtzager
    • 4
  • Magdolna Szente
    • 1
    Email author
  1. 1.Department of Comparative PhysiologySzegedNetherlands
  2. 2.Department of Medical Informatics and Biomedical EngineeringSzegedNetherlands
  3. 3.Department of NeurologyUniversity of SzegedSzegedHungary
  4. 4.Catholic University of NijmegenNijmegenNetherlands

Personalised recommendations