Concentration- and Time-Dependent Effect of Aminooxyacetic Acid on Cortical Epileptogenicity


In the present electrophysiological study the effect of aminooxyacetic acid (AOAA) on the cortical epileptogenicity, and on the basic electro-cortical activity was investigated in anesthetized rats.

AOAA did not induce spontaneous epileptiform discharges but modified the somato-sensory evoked responses and the cortical epileptogenicity (induced by 4-aminopyridine) in the same manner depending on its concentration. AOAA at low concentrations increased the amplitude of evoked responses and the ipsilateral manifestation of epileptiform activity, however, at high concentrations significantly suppressed both the evoked responses and the induction and expression of seizures discharges. The anti-convulsive effect of AOAA was time-dependent (reached its maximum after 2h AOAA pre-treatment) and reversible. AOAA at low concentrations probably increases the efficacy of the NMDA excitatory system and decreases GABA-synthesis, resulting neuronal hyperexcitation. However, AOAA at high concentrations can lead to an effective cortical inhibition through intra- and extracellular accumulation of GABA. The gradual GABA accumulation - up to a certain level - at the synapses could also explain the time-dependency of the anticonvulsive effect of AOAA.


  1. 1.

    Bruton, C. J. (1988) The neuropathology of temporal lobe epilepsy, Oxford University Press.

    Google Scholar 

  2. 2.

    Buzsáki, Gy., Traub, R. D. (1997) Physiological basis of EEG activity. In: Engel, J. Jr., Pedley, T. A. (eds) Epilepsy: A comprehensive textbook. Lippincott-Raven Publishers, Philadelphia.

    Google Scholar 

  3. 3.

    Collins, R. C., Mehta, S. (1978) Effect of aminooxyacetic acid (AOAA) on focal penicillin seizures. Brain Res. 157, 311–320.

    CAS  Article  Google Scholar 

  4. 4.

    DeVanzo, J. P., Matthews, R. J., Stafford, J. E. (1964) Studies on the mechanism of action of aminooxyacetic acid. I. Reversal of aminooxyacetic acid-induced convulsions by various agents. Tox. Appl. Pharmacol. 6, 388–395.

    Article  Google Scholar 

  5. 5.

    Du, F., Eid, T., Schwarcz, R. (1998) Neuronal damage after the injection of aminooxyacetic acid into the rat entorhinal cortex: A silver impregnation study. Neuroscienc. 82, 1165–1178.

    CAS  Article  Google Scholar 

  6. 6.

    Eid, T., Schwarcz, R., Ottersen, O. P. (1999) Ultrastructure and immunocytochemical distribution of GABA in layer III of the rat medial entorhinal cortex following aminooxyacetic acid-induced seizures. Exp. Brain Res. 125, 463–475.

    CAS  Article  Google Scholar 

  7. 7.

    Foster, A. C., Vezzani, A., French, E. D., Schwarcz, R. (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 48, 273–278.

    CAS  Article  Google Scholar 

  8. 8.

    Fukao, K., Momiyama, T., Ishihara, K., Ujihara, H., Fujita, Y., Taniyama, K., Serikawa, T., Sasa, M. (1998) Inhibition by gamma-aminobutyric acid system activation of epileptic seizures in spontaneously epileptic rats. Jpn. J. Pharmacol. 76, 387–396.

    CAS  Article  Google Scholar 

  9. 9.

    Gupta, A., Wang, Y., Markram, H. (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Scienc. 287, 273–278.

    CAS  Article  Google Scholar 

  10. 10.

    Hicks, T. P., Conti, F. (1996) Amino acids as the source of considerable excitation in cerebral cortex. Can. J. Physiol. Pharmacol. 74, 341–361.

    CAS  PubMed  Google Scholar 

  11. 11.

    Kozlowski, V. L. (1988) Experimental study of the antiepileptic activity of fenibut and its combinations with sodium valproate and aminooxyacetic acid. Farmakol. Toksikol. 51, 18–21.

    Google Scholar 

  12. 12.

    Kuriyama, K., Roberts, E., Rubinstein, M. K. (1966) Elevation of gamma-aminobutyric acid in brain with amino-oxyacetic acid and susceptibility to convulsive seizures in mice: a quantitative re-evaluation. Biochem. Pharmacol. 15, 221–236.

    CAS  Article  Google Scholar 

  13. 13.

    Le Gal, S., La Salle, G. (1980) Inhibition of kindling-induced generalized seizures by aminooxyacetic acid. Can. J. Physiol. Pharmacol. 58, 7–11.

    Article  Google Scholar 

  14. 14.

    Löscher, W. (1986) Development of tolerance to the anticonvulsant effect of GABAmimetic drugs in genetically epilepsy-prone gerbils. Pharmacol. Biochem. Behav. 24, 1007–1013.

    Article  Google Scholar 

  15. 15.

    Löscher, W., Hörstermann, D. (1994) Differential effects of vigabatrin, gamma-acetylenic GABA, aminooxyacetic acid and valproate on levels of various amino acids in rat brain regions and plasma. Naunyn. Schmiedebergs. Arch. Pharmacol. 349, 270–278.

    Article  Google Scholar 

  16. 16.

    Löscher, W., Hönack, D., Gramer, M. (1989) The use of inhibitors of GABA-transaminase for the estimation of GABA turnover in various brain regions of rats: a re-evaluation of aminooxyacetic acid. J. Neurochem. 53, 1737–1750.

    Article  Google Scholar 

  17. 17.

    McMaster, O. G., Du, F., French, E. D., Schwartz, R. (1991) Focal injection of aminooxyacetic acid produces seizures and lesions in rat hippocampus: evidence for mediation by NMDA receptors. Exp. Neurol. 113, 378–385.

    CAS  Article  Google Scholar 

  18. 18.

    Minatogawa, Y., Noguchi, T., Kido, R. (1974) Kynurenine pyruvate transaminase in rat brain. J. Neurochem. 23, 271–272.

    CAS  Article  Google Scholar 

  19. 19.

    Orrego, F., Miranda, R. (1976) Electrical induced release of (3H)GABA from neocortical thin slices. Effects of stimulus waveform and amino-oxyacetic acid. J. Neurochem. 26, 1033–1038.

    CAS  Article  Google Scholar 

  20. 20.

    Pin, J. P., Bockaert, J. (1989) Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture. J. Neurosci. 9, 648–656.

    CAS  Article  Google Scholar 

  21. 21.

    Scharfman, H. E., Goodman, J. H., Du, F., Schwarcz, R. (1998) Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. J. Neurophysiol. 80, 3031–3046.

    CAS  Article  Google Scholar 

  22. 22.

    Snodgrass, S. R., Iverson, L. L. (1973) Effects of AOAA on (3H)GABA uptake by rat brain slices. J. Neurochem. 20, 431–439.

    CAS  Article  Google Scholar 

  23. 23.

    Speciale, C., Wu, H. Q., Gramsbergen, J. B., Turski, W. A., Ungerstedt, U., Schwarcz, R. (1990) Determination of extracellular kynurenic acid in the striatum of unanaesthetized rats: effect of aminooxyacetic acid. Neurosci. Lett. 14, 198–203.

    Article  Google Scholar 

  24. 24.

    Szente, M. B., Boda, B. (1994) Cellular mechanisms of neocortical secondary epileptogenesis. Brain Res. 648, 203–214.

    CAS  Article  Google Scholar 

  25. 25.

    Szente, M. B., Pongrácz, F. (1979) Aminopyridine-induced seizure activity. EEG Clin. Neurophysiol. 46, 605–608.

    CAS  Article  Google Scholar 

  26. 26.

    Thomson, J. L., Holmes, G. L., Taylor, G. W., Feldman, D. R. (1988) Effects of kynurenic acid on amygdaloid kindling in the rat. Epilepsy Res. 2, 302–308.

    Article  Google Scholar 

  27. 27.

    Turski, W. A., Dziki, M., Urbanska, E., Calderazzo-Filho, L. S., Cavalheiro, E. A. (1991) Seizures induced by aminooxyacetic acid in mice: Pharmacological characteristics. Synaps. 7, 173–180.

    CAS  Article  Google Scholar 

  28. 28.

    Turski, W. A., Dziki, M., Parada, J., Kleinrok, Z., Cavalheiro, E. A. (1992) Age dependency of the susceptibility of rats to aminooxyacetic acid seizures. Dev. Brain Res. 67, 137–144.

    CAS  Article  Google Scholar 

  29. 29.

    Urbanska, E., Ikonomidou, C., Sielucka, M., Turski, W. A. (1991) Aminooxyacetic acid produces excitotoxic leisons in rat striatum. Synaps. 9, 129–135.

    CAS  Article  Google Scholar 

  30. 30.

    Vécsei, L., Beal, F. M. (1992) Behavioural and pharmacological effects of centrally administrated aminooxyacetic acid in rats. Eur. J. Pharmacol. 220, 259–262.

    Article  Google Scholar 

  31. 31.

    Wood, J. D., Russell, M. P., Kurylo, E., Newstead, J. D. (1979) Stability of synaptosomal GABA levels and their use in determining the in vivo effects of drugs: convulsant agents. J. Neurochem. 33, 61–68.

    CAS  Article  Google Scholar 

  32. 32.

    Wood, J. D., Russell, M. P., Kurylo, E. (1980) The ψ-aminobutyrate content of nerve endings (synap-tosomes) in mice after the intramuscular injection of ψ-aminobutyrate-elevating agents: A possible role in anticonvulsant activity. J. Neurochem. 35, 125–130.

    CAS  Article  Google Scholar 

  33. 33.

    Wuarin, J. P., Dudek, F. E. (1996) Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated rats. J. Neurosci. 16, 4438–4448.

    CAS  Article  Google Scholar 

  34. 34.

    Zilberter, Y. (2000) Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurones in rat neocortex. J. Physiolog. 528, 489–496.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Magdolna Szente.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Barna, B., Szász, A., Asztalos, T. et al. Concentration- and Time-Dependent Effect of Aminooxyacetic Acid on Cortical Epileptogenicity. BIOLOGIA FUTURA 53, 245–256 (2002).

Download citation


  • Aminooxyacetic acid
  • anticonvulsive
  • proconvulsive
  • 4-AP-induced seizures