Advertisement

Acta Biologica Hungarica

, Volume 53, Issue 1–2, pp 59–66 | Cite as

Autoradiographic Evaluation of [11 C] Vinpocetine Binding in the Human Postmortem Brain

  • H. Hall
  • K. Varnäs
  • J. Sandell
  • C. Halldin
  • L. Farde
  • Á. Vas
  • E. Kárpáti
  • B. GulyásEmail author
Article

Abstract

The main objective of the study was to evaluate with autoradiographic technique whether or not [11C]vin-pocetine, a compound widely used in the prevention and treatment of cerebrovascular diseases (Cavinton®, Gedeon Richter Ltd., Budapest), binds to specific sites in the human brain in post mortem human brain sections. Binding was assessed under four conditions: the incubation was performed using Tris-HCl buffer with or without the addition of salts (0.1% (weight/vol) ascorbic acid, 120 mM NaCl, 5 mM KCl, 2 mM CaCl2 and 1 mM MgCl2), with or without the addition of excess (10 µM) unlabelled vinpocetine. Measurements on digitized autoradiograms indicated that [11C]vinpocetine labelled all grey matter areas in the human brain to a similar extent and no significantly heterogeneous binding could be demonstrated among cortical or subcortical regions. The addition of excess unlabelled vinpocetine lowered the binding slightly in all regions. Although these results indicate that [11C]vinpocetine does not bind to human brain transmitter receptors or transporters with a high affinity (Ki < 10 nM), it cannot be ruled out that the compound binds to receptors and/or transporters with lower affinity.

Keywords

Human brain vinpocetine autoradiography post mortem neuroimaging receptor binding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple iso-forms. Physiol. Rev. 75, 725–748.CrossRefGoogle Scholar
  2. 2.
    Bönöczk, P., Gulyás, B., Ádám-Vizi, V., Nemes, A., Kárpáti, E., Kiss, B., Kapás, M., Szántay, C., Koncz, I., Zelles, T., Vas, Á. (2000) Role of sodium channel inhibition in neuroprotection: effect of vinpocetine. Brain Res. Bull. 53, 245–254.CrossRefGoogle Scholar
  3. 3.
    Culmsee, C., Semkova, I., Krieglstein, J. (1999) NGF mediates the neuroprotective effect of the beta2-adrenoceptor agonist clenbuterol in vitro and in vivo: evidence from an NGF-antisense study. Neurochem. Int. 35, 47–57.CrossRefGoogle Scholar
  4. 4.
    Gulyás, B., Csiba, L., Kerényi, L., Galuska, L., Trón, L. (1998) The effect of a single-dose intravenous vinpocetine on chronic stroke patients. A PET study. In: B. Gulyás and H. W. Müller-Gärtner (eds). Positron Emission Tomography: A Critical Assessment of Recent Trends. Kluwer Academic Publishers, Dordrecht, pp. 291–306.CrossRefGoogle Scholar
  5. 5.
    Gulyás, B., Halldin, C., Karlsson, P., Chou, Y.-H., Swahn, C.-G., Farde, L. (1999) Brain uptake and plasma metabolism of 11C-vinpocetine. A PET-study in cynomolgus monkey. J. Neuroimaging, 9, 217–222.CrossRefGoogle Scholar
  6. 6.
    Hall, H., Farde, L., Sedvall, G. (1988) Human dopamine receptor subtypes k]in vitro binding analysis using 3H-SCH 23390 and 3H-raclopride. J. Neur. Transm. 73, 7–21.CrossRefGoogle Scholar
  7. 7.
    Hall, H., Halldin, C., Farde, L., Sedvall, G. (1998) Whole hemisphere autoradiography of the postmortem human brain. Nucl. Med. Biol. 25, 715–719.CrossRefGoogle Scholar
  8. 8.
    Hall, H., Hurd, Y., Pauli, S., Halldin, C., Sedvall, G. (2001) Human brain imaging post-mortem k]whole hemisphere technologies. Int. Rev. Psych. 13, 12–17.CrossRefGoogle Scholar
  9. 9.
    Hall, H., Sedvall, G., Magnusson, O., Kopp, J., Halldin, C., Farde, L. (1994) Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsycho-pharmacology 11, 245–256.CrossRefGoogle Scholar
  10. 10.
    Halldin, C., Farde, L., Högberg, T., Hall, H., Sedvall, G. (1990) 11 C-Labelling of eticlopride in two different positions k]a selective high affinity ligand for the study of dopamine D-2 receptors using PET. Appl. Radiat. Isot. 19, 669–674.CrossRefGoogle Scholar
  11. 11.
    Hara, H., Ozaki, A., Yoshidomi, M. S. T. (1990) Protective effect of KB-2796, a new calcium antagonist, in cerebral hypoxia and ischemia. Arch. Int. Pharmacodyn. Ther. 304, 206–218.PubMedGoogle Scholar
  12. 12.
    Hidaka, H. (1984) Selective inhibitors of three forms of cyclic nucleotide phosphodiesterases. Trends Pharm. Sci. 5, 1–3.CrossRefGoogle Scholar
  13. 13.
    Hortobágyi, T., Harkány, T., Reisch, R., Urbanics, R., Kálmán, M., Nyakas, C., Nagy, Z. (1998) Neurotrophin-mediated neuroprotection by solid fetal telencephalic graft in middle cerebral artery occlusion: a preventive approach. Brain Res. Bull. 47, 185–191.CrossRefGoogle Scholar
  14. 14.
    Kaneko, S., Takahashi, H., Satoh, M. (1990) The use o. Xenopus oocytes to evaluate drugs affecting brain Ca2+ channels: effects of bifemelane and several nootropic agents. Eur. J. Pharmacol. 189, 51–58.CrossRefGoogle Scholar
  15. 15.
    Kiss, B., Cai, N. S., Erdő, S. L. (1991) Vinpocetine preferentially antagonizes quisqualate/AMPA receptor responses: evidence from release and ligand binding studies. Eur. J. Pharmacol. 209, 109–112.CrossRefGoogle Scholar
  16. 16.
    Lamar, J. C., Beaughard, M., Bromont, C., Pignet, H. (1986) Effects of vinpocetine in four pharmacological models of cerebral ischaemia. In: Krieglstein, J. (ed.). Pharmacology of Cerebral Ischemia. Elsevier, Amsterdam, pp. 334–339.Google Scholar
  17. 17.
    Lim, C. C., Cook, P. J., James, I. M. (1980) The effect of an acute infusion of vincamine and ethyl apovincaminate on cerebral blood flow in healthy volunteers. Br. J. Clin. Pharmacol. 9, 100–101.CrossRefGoogle Scholar
  18. 18.
    Miyazaki, M. (1995) The effect of a cerebral vasodilator, vinpocetine, on cerebral vascular resistance evaluated by the Doppler ultrasonic technique in patients with cerebrovascular diseases. Angiology 46, 53–58.CrossRefGoogle Scholar
  19. 19.
    Nakazawa, M., Matsuno, K., Mita, S. (1998) Activation of sigma1 receptor subtype leads to neuroprotection in the rat primary neuronal cultures. Neurochem. Int. 32, 337–343.CrossRefGoogle Scholar
  20. 20.
    Nicholson, C. D. (1990) Pharmacology of nootropics and metabolically active compunds in relation to their use in dementia. Psychopharmacology (Berlin) 101, 147–159.CrossRefGoogle Scholar
  21. 21.
    Persson, A., d’Argy, R., Gillberg, P. G., Halldin, C., Litton, J. E., Swahn, C. G., Sedvall, G. (1991) Autoradiography with saturation experiments of 11 C-Ro 15-1788 binding to human brain sections. J. Neurosci. Methods 36, 53–61.CrossRefGoogle Scholar
  22. 22.
    Rischke, R., Krieglstein, J. (1990) Effects of vinpocetine on local cerebral blood flow and glucose utilization seven days after forebrain ischemia in the rat. Pharmacology 41, 153–160.CrossRefGoogle Scholar
  23. 23.
    Salamon, G. (1971). Atlas de la Vascularisation Arterielle du Cerveau chez l’Homme. Sandoz, Paris, p. 189.Google Scholar
  24. 24.
    Santos, M. S., Duarte, A. I., Moreira, P. I., Oliveira, C. R. (2000) Synaptosomal response to oxida-tive stress: effect of vinpocetine. Free Radic. Res. 32, 57–66.CrossRefGoogle Scholar
  25. 25.
    Sauer, D., Rischke, R., Beck, T., Rossberg, C., Mennel, H. D., Bielenberg, G. W., Krieglstein, J. (1988) Vinpocetine prevents ischemic cell damage in rat hippocampus. Life Sci. 43, 1733–1739.CrossRefGoogle Scholar
  26. 26.
    Stolc, S. (1999) Indole derivatives as neuroprotectants. Life Sci. 65, 1943–1950.CrossRefGoogle Scholar
  27. 27.
    Szakáll, S., Boros, I., Balkay, L. Emri, M., Fekete, I., Kerényi, L., Lehel, S., Márián, T., Molnár, T., Varga, J., Galuska, L., Trón, L., Bereczki, D., Csiba, L., Gulyás, B. (1998) The cerebral effects of a single dose intravenous vinpocetine in chronic stroke patients: A PET study. J. Neuroimaging. 8, 197–294.CrossRefGoogle Scholar
  28. 28.
    Tretter, L., Ádám-Vizi, V. (1998) The neuroprotective drug vinpocetine prevents veratridine-induced [Na+]i and [Ca2+]i rise in synaptosomes. Neuroreport 9, 1849–1853.CrossRefGoogle Scholar
  29. 29.
    Urenjak, J., Obrenovitch, T. P. (1996) Pharmacological modulation of voltage-gated Na+ channels: a rational and effective strategy against ischemic brain damage. Pharmacol. Rev. 48, 21–67.Google Scholar
  30. 30.
    Yamaguchi, K., Yamada, S., Yoshida, M., Kyuki, K., Okuyama, S. (1993) Anti-anoxic effects of VA-045. J. Pharmacol. 61 (Suppl. 1), 184.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2002

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • H. Hall
    • 1
  • K. Varnäs
    • 1
  • J. Sandell
    • 1
  • C. Halldin
    • 1
  • L. Farde
    • 1
  • Á. Vas
    • 2
  • E. Kárpáti
    • 2
  • B. Gulyás
    • 1
    • 3
    Email author
  1. 1.Karolinska Institutet, Department of Clinical NeurosciencePsychiatry Section, Karolinska HospitalStockholmSweden
  2. 2.Gedeon Richter Ltd.BudapestHungary
  3. 3.Department of NeuroscienceKarolinska InstitutetStockholmSweden

Personalised recommendations