Advertisement

Acta Biologica Hungarica

, Volume 52, Issue 2–3, pp 211–221 | Cite as

Surface Structures of New and Lesser Known Species of Thermobifida as Revealed by Scanning Electron Microscopy

  • J. Kukolya
  • L. Szabó
  • L. HornokEmail author
Article

Abstract

Surface structures of representatives of the genus Thermobifida were examined by scanning electron microscopy. Spores formed at the tips of multibranched sporophores initially resembled short sausages; then, upon maturation, they gradually built up their typical ovoid shape. Characteristic differences were observed between T. cellulolytica strain TB108 and T. fusca strains TM51. The spores of TB108 were larger (0.8×1.3 μm) than those of TM51 (0.6×1.1 μm) in consequence of the more thickened outer squamous layer. When Thermobifida strains were grown on cellulose as sole carbon source, the mycelium was found to coil around the cellulose crystals and multiple protuberances emerged, resulting in a scabrous appearance to the mycelial surface. The presence of these cellulosome-like structures yielded a 24.5% surface enlargement of the scabrous mycelium as compared with the smooth one. The cellulosome emergence pattern paralleled the proportional increase in free endoglucanase activity measured during the culturing of these actinomycetes in the presence of cellulose.

Keywords

Thermobifida sporogenesis scanning electron microscopy cellulosome endoglucanase activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayer E. A., Lamed, R. (1986) Ultrastructure of the cell surface cellulosome of Clostridium ther-mocellum and its interaction with cellulose. J. Bacteriol. 167, 828–836.CrossRefGoogle Scholar
  2. 2.
    Blanco J., Coque J. J., Velasco J., Martin, J. F. (1997) Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-beta-1,4-xylanase of Thermomonospora alba ULJB1 with cellulose-binding ability. Appl. Microbiol. Biotechnol. 48, 208–217.CrossRefGoogle Scholar
  3. 3.
    Bozzola J. J., Russel, L. D. (1992) Specimen preparation for scanning electron microscopy. In: J. J. Bozzola, L. D. Russel (eds) Electron Microscopy. Jones and Bartlett Publishers, London, pp. 40–64.Google Scholar
  4. 4.
    Crawford D. L., Gonda, M. A. (1977) The sporulation process in Thermomonospora fusca as revealed by scanning and transmission electron microscopy. Can. J. Microbiol. 23, 1088–1095.CrossRefGoogle Scholar
  5. 5.
    Henssen, A. (1957) Beitrage zur morphologie und systematik der thermophilen actinomyceten. Arch. Microbiol. 26, 373–414.Google Scholar
  6. 6.
    Hostalka F., Moultrie A., Stutzenberger, F. (1992) Influence of carbon source on cell surface topology of Thermomonospora curvata. J. Bacteriol. 174, 7048–7052.CrossRefGoogle Scholar
  7. 7.
    Kleeberg I., Hetz, C., Kroppenstedt R. M., Muller R. J., Deckwer, W. D. (1998) Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Appl. Environ. Microbiol. 64, 1731–1735.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kukolya J., Dobolyi, C., Hornok, L. (1997) Isolation and identification of thermophilic cellulolytic actinomycetes. Acta Phytopath. Entomol. Hung. 32, 97–107.Google Scholar
  9. 9.
    Kukolya J., Laday M., Halbritter A., Oravecz O., Marialigeti K., Hornok, L. (2000) Thermobifida cellulolytica sp. nov., a new lignocellulose decomposing member of the genus Thermobifida. Proceedings of the General Assembly of the Hungarian Society for Microbiology, Keszthely, 63 p.Google Scholar
  10. 10.
    Lamed R., Naimark J., Morgenstern E., Bayer, E. A. (1987) Specialized cell surface structures in cellulolytic bacteria. J. Bacteriol. 169, 3792–3800.CrossRefGoogle Scholar
  11. 11.
    Lao G., Gurdev S., Ghangas G. S., Jung E. D., Wilson, D. B. (1991) DNA sequences of three p-1,4-endoglucanase genes from Thermomonospora fusca. J. Bacteriol. 173, 3397–3407.CrossRefGoogle Scholar
  12. 12.
    McCarthy, A. J. (1989) Thermomonospora and related genera. In: S. T. Williams, M. E. Sharpe, J. G. Holt (ed.) Bergey’ s Manual of Systematic Bacteriology, Vol. 4. Williams and Wilkins, Baltimore, pp. 2552–2572.Google Scholar
  13. 13.
    Schlochtermeier A., Niemeyer F., Schrempf, H. (1992) Biochemical and electron microscopic studies of the Streptomyces reticuli cellulase (avicelase) in its mycelium-associated and extracellular forms. Appl. Environ. Microbiol. 58, 3240–3248.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Spiridonov N. A., Wilson, D. B. (1998) Regulation of biosynthesis of individual cellulases in Thermomonospora fusca. J. Bacteriol. 180, 3529–3532.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Stutzenberger, F. J. (1991) Cellulose degradation by thermophilic aerobic bacteria. In: C. H. Haigler, P. J. Weimer (eds) Biosynthesis and Biodegradation of Cellulose. Marcel Dekker, New York, pp. 445–490.Google Scholar
  16. 16.
    Walter S., Rohde M., Machner M., Schrempf, H. (1999) Electron microscopy studies of cell-wall-anchored cellulose (Avicel)-binding protein (AbpS) from Streptomyces reticuli. Appl. Environ. Microbiol. 65, 886–892.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Whitney, P. J. (1982) Cellulase and pectinase induction and estimation. In: S. B. Primrose, A. C. Wardlaw (eds) Sourcebook of Experiments for the Teaching of Microbiology. Academic Press, New York, pp. 626–630.Google Scholar
  18. 18.
    Zhang Z., Wang, Y, Ruan, J. (1998) Reclassification of Thermomonospora and Microtetraspora. Int. J. Syst. Bacteriol. 48, 411–422.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2001

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Szent István University and Agricultural Biotechnology CenterGödöllőHungary

Personalised recommendations