Advertisement

Acta Biologica Hungarica

, Volume 52, Issue 2–3, pp 289–298 | Cite as

Variation of Isoenzyme and Rapd Patterns in Candida Albicans Morphological Mutants with Altered Colony Ultrastructure

  • M. PestiEmail author
  • Cs. Vágvölgyi
  • T. Papp
  • A. Nagy
  • A. Novák
Article

Abstract

Molecular typing methods were applied to characterize four stable morphological mutants [1] isolated from a UV-induced unstable mutant colony of Candida albicans. The wild-type strain (ATCC 64385), the intermediate unstable mutant and its four morphologically altered derivatives revealed the same elec-trophoretic karyotypes. Of the five isoenzymes tested (catalase, malate dehydrogenase, glutamate dehy-drogenase, acid phosphatase and β-glucosidase), glutamate dehydrogenase displayed a different enzyme pattern (with an extra band of lower mobility) in the morphological mutants. In contrast, the random amplification DNA polymorphism patterns of the mutant strains differed in all cases from that of the parental strain. Different primers revealed various degrees of DNA polymorphism; one of them (OPC-8) proved to be useful for differentiation between all examined strains. Differences in genetic alterations between spontaneous and induced mutants, and the applicability of different molecular markers to analyse the consequences of induced mutagenesis in C. albicans are discussed.

Keywords

Candida morphogenesis RAPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anné, J., Peberdy, J. F. (1981) Characterization of interspecific hybrids between Penicillium chryso-genum and P. roqueforti by isoenzyme analysis. Trans. Br. Mycol. Soc. 77, 401–408.CrossRefGoogle Scholar
  2. 2.
    Brewer, G. J., Sing, C. F. (1970) An introduction to isozyme techniques. Academic Press, New York.Google Scholar
  3. 3.
    Canon, R. D. (1986) Isolation of a mycelial mutant of Candida albicans. J. Gen. Microbiol. 132, 2405–2407.Google Scholar
  4. 4.
    Diaz-Guerra, T. M., Martinez-Suarez, J. V., Laguna, F., Rodriquez-Tudela, J. L. (1997) Comparison of four molecular typing methods for evaluating genetic diversity among isolates from human immunodeficiency virus-positive patients with oral candidiasis. J. Clinic. Microbiol. 35, 856–861.Google Scholar
  5. 5.
    Gil, C., Pomés, R., Nombela, C. (1988) A complementation analysis by parasexual recombination of Candida albicans morphological mutants. J. Gen. Microbiol. 134, 1587–1595.PubMedGoogle Scholar
  6. 6.
    Gil, C., Pomés, R., Nombela, C. (1990) Isolation and characterization of Candida albicans morphological mutants depressed for the formation of filamentous hypha-type structures. J. Bacteriol. 172, 2384–2391.CrossRefGoogle Scholar
  7. 7.
    Gil, C., Pérez-Diaz, R., Nombela, C. (1994) Inhibitory and morphological effects of several antifungal agents on three types of Candida albicans morphological mutants. J. Med. Vet. Mycol. 32, 151–161.CrossRefGoogle Scholar
  8. 8.
    Harris, H., Hopkinson, D. A. (1976) Handbook of enzyme electrophoresis in human genetics. Elsevier, Amsterdam.Google Scholar
  9. 9.
    Hills, D. M., Craig, M. (1990) Molecular systematics. Sinauer, Sunderland.Google Scholar
  10. 10.
    Hubbard, M. J., Markie, D., Poulter, R. T. M. (1986) Isolation and morphological characterization of a mycelial mutant of Candida albicans. J. Bacteriol. 165, 61–65.CrossRefGoogle Scholar
  11. 11.
    Hunter, P. R. (1991) A critical review of typing methods for Candida albicans and their applications. Crit. Rev. Microbiol. 17, 417–434.CrossRefGoogle Scholar
  12. 12.
    Leach, J., Finkelstein, D. B., Rambosek, J. A. (1986) Rapid miniprep of DNA from filamentous fungi. Fung. Genet. Newslett. 33, 32–33.Google Scholar
  13. 13.
    Lehman, P. F., Kemker, B. J., Hsiao, C. B., Sandesh, D. (1989) Isoenzyme biotypes of Candida species. J. Clin. Microbiol. 27, 2514–2521.Google Scholar
  14. 14.
    Magee, P. T. (1998) Analysis of the Candida albicans genome. In: Brown J. P., Tuite, M. F. (eds) Yeast gene analysis. Methods in Microbiol. Vol. 26. Academic Press, San Diego, pp. 395–415.CrossRefGoogle Scholar
  15. 15.
    May, B. (1998) Starch gel electrophoresis of allozymes. In: Horlzel, A. R. (eds) Molecular genetic analysis of populations. Oxford University Press, Oxford.Google Scholar
  16. 16.
    Nagy, Á., Garamszegi, N., Vágvölgyi, Cs., Ferenczy, L. (1994) Electrophoretic karyotypes of Phaffia rhodozyma strains. FEMS Microbiol. Lett. 123, 315–318.CrossRefGoogle Scholar
  17. 17.
    Navarro-Garcia, F., Perez-Diaz, R. M., Magee, B. B., Pla, J., Nombela, C., Magee, P. T. (1995) Chromosome reorganization in Candida albicans 1001 strain. J. Med. Vet. Mycol. 33, 361–366.CrossRefGoogle Scholar
  18. 18.
    Odds, F. C. (1988) Candida and candidiosis. 2nd ed. Bailliere Tindall, London.Google Scholar
  19. 19.
    Payton, M. A., de Tiani, M. (1990) The isolation of osmotic remedial conditional lethal mutants of Candida albicans. Curr Genet. 17, 293–296.CrossRefGoogle Scholar
  20. 20.
    Pesti, M., Sipiczki, M., Pintér, Y. (1999) Scanning electron microscopy characterization of colonies of Candida albicans morphological mutants. J. Med. Microbiol. 48, 167–172.CrossRefGoogle Scholar
  21. 21.
    Pesti, M., Czakó-Vér, K., Pintér, Y., Papp, T., Nagy, Á., Ferenczy, L., Vágvölgyi, Cs. (1997) Variation of colony ultrastructure, isoenzyme pattern and RAPD products in Candida albicans morphological mutants. XIII. ISHAM Congress, Parma, Italy, p. 128.Google Scholar
  22. 22.
    Pla, J., Gil, C., Monteoliva, F., Navarro-Garcia, M., Sánchez, M., Nombela, C. (1996) Understanding Candida albicans at molecular level. Yeast. 12, 1677–1702.CrossRefGoogle Scholar
  23. 23.
    Reynes, J., Pujol, C., Moreau, C., Mallié, M., Renaud, F., Janbon, F., Bastide, J. M. (1996) Simultaneous carriage of Candida albicans strains from HIV-infected patients with oral candidiasis: multilocus enzyme electrophoresis analysis. FEMS Microbiol. Lett. 137, 269–273.CrossRefGoogle Scholar
  24. 24.
    Rustchenko-Bulgac, E. P. (1991) Variation of Candida albicans electrophoretic karyotypes. J. Bacteriol. 173, 6586–6596.CrossRefGoogle Scholar
  25. 25.
    Rustchenko-Bulgac, E. P., Curran, T. M., Sherman, F. (1993) Variations in the number of ribosomal DNA units in morphological mutants and normal strains of Candida albicans and in normal strains of Saccharomyces cerevisiae. J. Bacteriol. 175, 7189–7199.CrossRefGoogle Scholar
  26. 26.
    Soll, D. R. (1997) Gene regulation during high-frequency switching in Candida albicans. Microbiol. 143, 279–288.CrossRefGoogle Scholar
  27. 27.
    Suzuki, T., Kobayashi, I., Kanabe, T., Tanaka, K. (1989) High frequency variation of colony morphology and chromosome reorganization in the pathogenic yeast Candida albicans. J. Gen. Microbiol. 135, 425–434.PubMedGoogle Scholar
  28. 28.
    Suzuki, T., Miyamae, Y., Ishida, I. (1991) Variation of colony morphology and chromosomal rearrangement in Candida tropicalis pR233. J. Gen. Microbiol. 137, 161–167.CrossRefGoogle Scholar
  29. 29.
    Takasuka, T., Baily, G. G., Birch, M., Anderson, M. J., Lew, D., Denning, D. W. (1998) Variation in morphotype, karyotype and DNA type of fluconazole resistant Candida albicans from an AIDS patient. J. Infect. 36, 57–62.CrossRefGoogle Scholar
  30. 30.
    Vágvölgyi, Cs., Papp, T., Palágyi, Zs., Michailides, T. J. (1996) Isozyme variation among isolates of Mucor piriformis. Mycologia. 88, 602–607.CrossRefGoogle Scholar
  31. 31.
    Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic. Acids. Res. 18, 6531–6535.CrossRefGoogle Scholar
  32. 32.
    Woodbury, W., Spencer, A. K., Stanmann, M. A. (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem. 44, 301–305.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2001

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Pesti
    • 1
    Email author
  • Cs. Vágvölgyi
    • 2
  • T. Papp
    • 2
  • A. Nagy
    • 2
  • A. Novák
    • 1
  1. 1.Department of General and Environmental Microbiology, Institute of Biology, Faculty of SciencesUniversity of PécsPécsHungary
  2. 2.Department of Microbiology, Faculty of SciencesUniversity of SzegedSzegedHungary

Personalised recommendations