Advertisement

Community Ecology

, Volume 19, Issue 2, pp 156–167 | Cite as

Assemblages of carabid beetles (Col. Carabidae) and ground-dwelling spiders (Araneae) in natural and artificial regeneration of pine forests

  • A. KosewskaEmail author
  • E. Topa
  • M. Nietupski
  • R. Kędzior
Article
  • 2 Downloads

Abstract

Carabid beetles and spiders are at the top of the hierarchy of general invertebrate predators, which can help to reduce the abundance of harmful forest pests. They are also frequently used as environmental indicators. In this paper we analyzed the abundance, species richness and changes in carabid beetle and spider assemblages in three treatments of pine forest regeneration — natural, natural with soil prepared by ploughing and artificial with seedlings planted in ploughed soil. The most beneficial forest regeneration treatment variant of forest regeneration for carabid beetles and spiders was the natural regeneration of pine stands without any preceding soil preparation. Both taxa responded strongly to soil ploughing. We also noted the replacement of forest species by less sensitive open area species. In carabid assemblages, large changes in the trophic structure were observed, as predatory species were replaced by hemizoophages in the ploughed treatments.

Keywords

Ground beetles Ground-living spiders Pine forest regeneration 

Abbreviations

A

Artificial

Ab

Abundance

GLMM

General Linear Mixed effect Model

N

Natural

N+P

Natural with Ploughed soil

NMDS

Non-metric MultiDimensional Scaling

R

richness

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to Dr S. Venn for valuable comments and improving the English. This work was supported by the grant: “Natural forest regeneration as a mean of decrease of deer browsing in Warmia and Mazury” funding from General Directorate of State Forests. We would like to thank Prof. J. Borkowski for allowing us to conduct research within the framework of the grant.

Supplementary material

42974_2018_19020156_MOESM1_ESM.pdf (25 kb)
Supplementary material, approximately 25 KB.

References

  1. Aleksandrowicz, O.R. 2004. Biegaczowate (Carabidae). In: Bogdanowicz, W., E. Chudzińska, I. Pilipiuk, and E. Skibińska (Eds.). Fauna Polski – charakterystyka i wykaz gatunków. Muzeum i Instytut Zoologii PAN. Warszawa. I: 28–42 [In Polish].Google Scholar
  2. Aleksandrowicz-Trzcińska, M., S. Drozdowski, B. Brzeziecki, P. Rutkowska and B. Jabłońska. 2014. Effects of different methods of site preparation on natural regeneration of Pinus sylvestris in Eastern Poland. Dendrobiology 71: 73–81.Google Scholar
  3. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecology 26:32–46.Google Scholar
  4. Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austral. J. Ecol. 18:117–143.CrossRefGoogle Scholar
  5. Debnár, Z., T. Magura, R. Horváth, D.D. Nagy, S. Mizser, A. Demkó, B. Tajthi and B. Tóthmérész. 2016. Group selection harvesting supports diversity of forest specjalist epigeic arthropods (Coleoptera: Carabidae; Arachnida: Araneae; Isopoda: Oniscidae). Period. Biol. 118:311–314.CrossRefGoogle Scholar
  6. Forests in Poland — report. 2016. Eds. Centrum Informacyjne Lasów Państwowych. Warszawa. pp. 56 [In Polish. http://www.lasy.gov.pl].
  7. Hallikainen, V., M. Hyppönen, J. Hyvönen and J. Niemelä. 2007. Establishment and height development of harvested and naturally regenerated Scots pine near the timberline in North-East Finnish Lapland. Silva Fenn. 41:71–88.CrossRefGoogle Scholar
  8. Hammer O., D.A.T. Harperm, and P.D. Ryan. 2001. Paleontological Statistics software package for education and data analysis. Paleontol. Electron. 4:9.Google Scholar
  9. Hänggi, A., E. Stöckli, and W. Nentwig. 1995. Habitats of Central European spiders. Miscellanea Faunistica Helvetiae 4:1–460.Google Scholar
  10. Holland, J.M. and M.L. Luff. 2000. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr. Pest Manag. Rev. 5:109–129.CrossRefGoogle Scholar
  11. Huber, C., C. Schulze and M. Baumgarten. 2007. The effect of femeland small scale clear-cutting on ground dwelling spider communities in a Norway spruce forest in Southern Germany. Biodivers. Conserv. 16:3653–3680.CrossRefGoogle Scholar
  12. Hůrka, K. 1996. Carabidae of the Czech and Slovak Republics. Kabournek – Zlin.Google Scholar
  13. Jelaska, L.Š, V. Dumbović and M. Kučinić. 2011. Carabid beetle diversity and mean individual biomass in beech forests of various ages. ZooKeys 100:393–405.CrossRefGoogle Scholar
  14. Junker, E.A., U.M. Ratschker and M. Roth. 2000. Impacts of silvicultural practice on the ground living-spider community (Arachnida: Araneae) of mixed mountain forests in the Chiemgau Alps (Germany). In: Gajdoś P. and S. Pekar (eds.), Proceedings of the 18th European Colloquium of Arachnology, Stara Leśna. Ekologia (Bratislava) 19(3):107–110.Google Scholar
  15. Kaliszewski, A., E. Wysocka-Fijorek, M. Jabłoński and W. Młynarski. 2014. Update of the “National Forest Improvement Program”. Documentation of the Forestry Research Institute [In Polish].Google Scholar
  16. Kędzior, R., A. Szwalec, P. Mundała and T. Skalski. 2017. Ground beetle assemblages in recultivated and spontaneously regenerated forest ecosystems on post-industrial areas. Sylwan 161:512–518 [In Polish].Google Scholar
  17. Koivula, M.J. 2011. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100:287–317.CrossRefGoogle Scholar
  18. Koponen, S. 2005. Early succession of boreal spider community after forest fire. J. Arachnol. 33:230–235.CrossRefGoogle Scholar
  19. Kosewska, A., T. Skalski and M. Nietupski. 2014. Effect of conventional and non-inversion tillage systems on the abundance and some life history traits of carabid beetles (Coleoptera: Carabidae) in winter triticale fields. Eur. J. Entomol. 111 (5):669–676.CrossRefGoogle Scholar
  20. Kotze, J.D., P. Brandmayr, A. Casale, E. Dauffy-Richard, W. Dekoninck, M.J. Koivula, G.L. Lövei, D. Mossakowski, J. Noordijk, W. Paarmann, R. Pizzolotto, P. Saska, A. Schwerk, J. Serrano, J. Szyszko, A. Taboada, H. Turin, S. Venn, R. Vermeulen and T. Zetto. 2011. Forty years of carabid beetle research in Europe — from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100:55–148.CrossRefGoogle Scholar
  21. Kromp, B. 1999. Carabid beetles in sustainable agriculture: a review of pest control efficacy, cultivation impact and enhancement. Agr. Ecosyst. Environ. 74:187–228.CrossRefGoogle Scholar
  22. Lindroth, C.H. 1985. The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomol. Scandinavica 15:1–225.Google Scholar
  23. Lindroth, C.H. 1986. The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomol. Scandinavica 15:230–497.Google Scholar
  24. Magura, T, D. Bogyó, S.Z. Mizser, D.D. Nagy and B. Tóthmérész. 2015. Recovery of ground-dwelling assemblages during reforestation with native oak depends on the mobility and feeding habits of the species. Forest Ecol. Manage. 339:117–126.CrossRefGoogle Scholar
  25. Maleque, M.A., K. Maeto and H.T. Ishii. 2009. Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. Appl. Entomol. Zool. 44 (1): 1–11.CrossRefGoogle Scholar
  26. Matuszkiewicz, J.M, A. Kowalska, A. Kozłowska, E. Roo-Zielińska and J. Solon. 2013. Differences in plant-species composition, richness and community structure in ancient and post-agricultural pine forests in central Poland. Forest Ecol. Manage. 310:567–576.CrossRefGoogle Scholar
  27. Nagy, D.D., T. Magura, Z. Debnár, R. Horváth, B. Tóthmérész. 2015. Shift of rove beetle assemblages in reforestations: Does nativity matter? J. Insect Conserv. 19:1075–1087.CrossRefGoogle Scholar
  28. Nagy, D.D., T. Magura, S. Mizser, Z. Debnár and B. Tóthmérész. 2016. Recovery of surface-dwelling assemblages (Coleoptera: Carabidae, Staphylinidae) during clear-cut originated reforestation with native tree species. Period. Biol. 118:195–203.CrossRefGoogle Scholar
  29. Netwig, W., T. Blick, D. Gloor, A. Hänggi, and C. Kropf. 2017. Spiders of Europe. http://www.araneae.unibe.ch. Version 11. 2017, accessed on: 29.11.2017. doi: 10.24436/1.
  30. Niemelä, J., D. Langor, J.R. Spence. 1993. Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in Western Canada. Conserv. Biol. 7:551–561.CrossRefGoogle Scholar
  31. Oxbrough, A., S. Irwin, M. Wilson and J. O’Halloran. 2014. Mechanism and predictors of ecological change in managed forests: A selection of papers from the second international conference on biodiversity in forest ecosystems and landscapes. Forest Ecol. Manage. 321:1–4.CrossRefGoogle Scholar
  32. Oxbrough, A., T. Gittings, J. O’Halloran, P.S. Giller and G.F. Smith. 2005. Structural indicators of spider communities across the forest plantation cycle. Forest Ecol. Manage. 212:171–183.CrossRefGoogle Scholar
  33. Oxbrough, A., T. Gittings, J. O’Halloran, P.S. Giller and T.C. Kelly. 2006. The influence of open space on ground-dwelling spider assemblages within plantation forests. Forest Ecol. Manage. 237:404–417.CrossRefGoogle Scholar
  34. Paillet, Y., L. Bergès, J. Hjältén, P. Ódor, C. Avon, M. Bernhardt-Römermann, R. Bijlsma, L. De Bruyn, M. Fuhr, U. Grandin, R. Kanka, L. Lundin, S. Luque, T. Magura, S. Matesanz, I. Mészáros, M.-T. Sebastià, W. Schmidt, T. Standovár, B. Tóthmérész, A. Uotila, F. Valladares, K. Vellak and R. Virtanen. 2010. Biodiversity differences between managed and unmanaged forest: meta-analysis of species richness in Europe. Conserv. Biol. 24:101–112.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pearce, J.L. and L.A. Venier. 2006. The use of beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol. Indic. 6:780–793.CrossRefGoogle Scholar
  36. Pedley, S.M. and P.M. Dolman. 2014. Multi-taxa trait and functional responses to physical disturbance. J. Anim. Ecol. 83:1542–1552.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pigan, I. 2010. Natural regeneration of Scots pine (Pinus sylvestris L.) growing in moist habitats using different soil preparation metods. Sylwan 154:524–534 [In Polish].Google Scholar
  38. Pohrl, G.R, D.W. Langor, J.R. Spence. 2007. Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biol. Conserv. 137:294–307.CrossRefGoogle Scholar
  39. Purvis, G., and A. Fadl. 2002. The influence of cropping rotations and soil cultivation practice on the population ecology of carabids (Coleoptera: Carabidae) in arable land. Pedobiologia 46:452–474.CrossRefGoogle Scholar
  40. Rainio, J. and J. Niemelä. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12:487–506.CrossRefGoogle Scholar
  41. Report of State of Europe’s Forests. 2015. Ministerial Conference on the Protection of Forests in Europe. Forest Europe Liaison Unit Madrid. Spain.Google Scholar
  42. Samu, F., F. Kádár, G. Ónodi, M. Kertész, A. Szirányi, É. Szita, K. Fetykó, D. Neidert, E. Botos and V. Altbäcker. 2010. Differential ecological responses of two generalist arthropod groups, spiders and carabid beetles (Araneae, Carabidae), to the effects of wildfire. Community Ecol. 11:129–139.CrossRefGoogle Scholar
  43. Schuldt, A., N. Fahrenholz, M. Brauns, S. Migge-Kleian and M. Schaefer. 2008. Communities of ground-living spiders in deciduous forests: Does tree species diversity matter? Biodivers. Conserv. 17:1267–1284.CrossRefGoogle Scholar
  44. Schwerk, A. and J. Szyszko. 2007. Successional patterns of carabid fauna (Coleoptera: Carabidae) in planted and natural regenerated pine forests growing on old arable land. Baltic J. Coleopterol. 7:9–16.Google Scholar
  45. Schwerk, A. and J. Szyszko. 2011. Model of succession in degraded areas based on carabid beetles (Coleoptera, Carabidae). In: Kotze D.J., T. Assmann, J. Noordijk, H. Turin and R. Vermeulen (Eds.). Carabid Beetles as Bioindicators: Biogeographical, Ecological and Environmental Studies. ZooKeys 100:319–332.Google Scholar
  46. Sharova, I.H. 1974. Zhiznennye formy imago zhuzhelits (Coleoptera, Carabidae). Zool. Zhurn. 53 (5):692–709 [In Russian].Google Scholar
  47. Sipos, J., J. Hodecek, T. Kuras and A. Dolny. 2017. Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites. Bull. Entomol. Res. 107 (4):466–477.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Skalski, T., R. Kędzior, D. Kolbe and S. Knutelski. 2015. Ground beetles as indicators of heavy metal pollution. Sylwan 159:905–911 [In Polish].Google Scholar
  49. Skłodowski, J.J. 2010. Carabid communities as zooindicators of soil scarification techniques applied in clear-cutted forest stands and the further used management practices. Sylwan 154:625–638 [In Polish].Google Scholar
  50. Skłodowski, J.J. 2014. Effects of top-soil preparation and broad-leaved tree mixture on carabid beetles in afforested fallow plots. Restor. Ecol. 22:13–21.CrossRefGoogle Scholar
  51. Skłodowski, J.J. 2016. Manual soil preparation and piles of branches can support ground beetles (Coleoptera, carabidae) better than four different mechanical soil treatments in a clear-cut area of a closed-canopy pine forest in northern Poland. Scand. J. Forest Res. 32 (2):123–133.CrossRefGoogle Scholar
  52. Szramka, H. 2005. Economic aspects of different ways of renovation of forest. Sylwan 11:59–65 [In Polish].Google Scholar
  53. Taboada, A., R. Tárrega, L. Calvo, E. Marcos, J.A. Marcos and J. M. Salgado. 2010. Plant and carabid beetle species diversity in relation to forest type and structural heterogeneity. Eur. J. For. Res. 129:31–45.CrossRefGoogle Scholar
  54. Tamutis, V. and J.J. Skłodowski. 2016. Coleoptera assemblages of pine forests depends on the distance to the source of nitrogen pollution. Community Ecol. 17:225–236.CrossRefGoogle Scholar
  55. World Spider Catalog (2017). Natural History Museum Bern, online at http://wsc.nmbe.ch, version 18.5, accessed on 29.11.2017. doi: 10.24436/2.

Copyright information

© Akadémiai Kiadó, Budapest 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Kosewska
    • 1
    Email author
  • E. Topa
    • 1
  • M. Nietupski
    • 1
  • R. Kędzior
    • 2
  1. 1.Department of Entomology, Phytopathology and Molecular DiagnosticUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  2. 2.Department of Ecology, Climatology and Air ProtectionUniversity of Agriculture in KrakowKrakowPoland

Personalised recommendations