Advertisement

Community Ecology

, Volume 19, Issue 2, pp 116–124 | Cite as

Spatial diet overlap and food resource in two congeneric mullet species revealed by stable isotopes and stomach content analyses

  • A. F. S. GarciaEmail author
  • A. M. Garcia
  • S. R. Vollrath
  • F. Schneck
  • C. F. M. Silva
  • Í. J. Marchetti
  • J. P. Vieira
Open Access
Article
  • 11 Downloads

Abstract

Food partitioning among coexisting species in different habitats remains an important research topic in trophic ecology. In this work, we combined carbon and nitrogen stable isotope ratios and stomach content analyses to investigate differences in diet and niche overlap of two congeneric juvenile mullet species (Mugil curema and Mugil liza) coexisting in a marine surf-zone and an estuarine zone in southern Brazil (29oS). These habitats have contrasting levels of food availability, especially in terms of prey diversity, with higher microalgae diversity in the estuary than in the marine surf-zone. In these contrasting conditions, we predicted that both mullet species will have (a) higher niche overlap and smaller niche breadth at the marine surf-zone due to the common exploration of highly abundant surf-zone diatoms and (b) lower niche overlap and higher niche breadth inside the estuary due to selective feeding on more diverse food resources. Isotope niche areas (measured as standard ellipse areas) were higher in the estuary (6.10 and 6.18) than in the marine surf-zone (3.68 and 3.37) for both M. curema and M. liza, respectively. We observed an overlap of 52% in isotopic niches of both species in the marine surf-zone and none in the estuary. We also found contrasting patterns in the diet composition between species according to the habitat. At the marine surfzone, diatoms of the classes Bacillariophyceae and Coscinodiscophyceae dominated (> 99%) the food content of both mullet species. In contrast, green algae, cyanobacteria, dinoflagellates and flagellates comprised the diet of both species in the estuary. These results could be explained by spatial differences in food availability (especially regarding diversity of microalgae) between both habitats. At the marine site, both species explored the most abundant microalgae available (mostly the surf-zone diatom Asterionellopsis cf. guyunusae and fragments of Coscinodiscus), whereas in the estuary both species shifted their diets to explore the greater diversity of microalgae resources. Overall, our findings revealed that niche partitioning theory could not fully predict changes in breadth and overlap of food niches of estuarine dependent fish species with complex life cycles encompassing marine to estuarine systems with contrasting food availabilities.

Keywords

Estuary Food niche Isotopic niche Marine surf-zone Mugilidae Surf-zone diatoms Trophic ecology 

Abbreviations

ICMBio

Brazilian National Environmental authority

SCA

Stomach Content Analysis

SEAB

Bayesian Standard Ellipse Areas

SEAC

Small Sample size-corrected standard Ellipse Areas

SIA

Stable Isotope Analysis

SIBER

Stable Isotope Bayesian Ellipses in R

UPGMA

Unweighted Pair Group Method with Arithmetic mean

TL

Total Length

Notes

Acknowledgments

Authors are thankful to FAPERGS (project no. 2327-2551/14-6) by the financial support for field sampling and sample processing and to CAPES-PVE (project no. A101-2013) by financial support for carry out the stable isotope analysis. A.F.S. Garcia thanks CAPES for the doctorate scholarship (Proc. 88881.132228/2016-01), P. Pereyra, K. Neves, M. Lang and V. Robles for their assistance with sample processing and the fishermen Milton for helping during fish collections. JPV and AMG are thankful for research fellowship provided by CNPq.

Supplementary material

42974_2018_19020116_MOESM1_ESM.pdf (2 mb)
Supplementary material, approximately 2134 KB.

References

  1. Abdellaoui, S., H.E. Halouani, I. Tai and H. Masski. 2017. Resource partitioning within major bottom fish species in a highly productive upwelling ecosystem. J. Mar. Syst. 173:1–8.CrossRefGoogle Scholar
  2. Bastos, R.F.; F. Corrêa, A.M. Garcia and K.O. Winemiller. 2017. Are you what you eat? Effects of trophic discrimination factors on estimates of food assimilation and trophic position with a new estimation method. Ecol. Indic. 75:234–241.CrossRefGoogle Scholar
  3. Bearhop, S., C.E. Adams, S. Waldron, R.A. Fuller and H. Macleod. 2004. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73:1007–1012.CrossRefGoogle Scholar
  4. Bergesch, M., C. Odebrecht and P.C. Abreu. 1995. Microalgas do estuário da Lagoa dos Patos: Interação entre o sedimento e a coluna de água. Oecol. Brasil. 1:273–289.CrossRefGoogle Scholar
  5. Biggs, B.J.F. and C. Kilroy. 2000. Stream Periphyton Monitoring Manual. National Institute of Water and Atmospheric Research, Christchurch.Google Scholar
  6. Carassou, L., A.K. Whitfield, S. Moyo and N.B. Richoux. 2017. Dietary tracers and stomach contents reveal pronounced alimentary flexibility in the freshwater mullet (Myxus capensis, Mugilidae) concomitant with ontogenetic shifts in habitat use and seasonal food availability. Hydrobiologia 799:327–348.CrossRefGoogle Scholar
  7. Cardona, L. 2001. Non-competitive coexistence between Mediterranean grey mullet: evidence from seasonal changes en food availability, niche breadth and trophic overlap. J. Fish Biol. 59:729–744.CrossRefGoogle Scholar
  8. Cardona, L. 2015. Food and Feeding of Mugilidae. In: D. Crosetti and S.J.M. Blaber (eds.), Biology, Ecology and Culture of Grey Mullet (Mugilidae). EUA, Taylor & Francis Group. pp. 165–195.Google Scholar
  9. Catry, T., P.M. Lourenço, R.J. Lopes, C. Carneiro, J.A. Alves, J. Costa, H. Rguibi-Idrissi, S. Bearhop, T. Piersma and J.P. Granadeiro. 2016. Structure and functioning of intertidal food webs along an avian flyway: a comparative approach using stable isotopes. Funct. Ecol. 30:468–478CrossRefGoogle Scholar
  10. Condini, M.V., D.J. Hoeinghaus and A.M. Garcia. 2015. Trophic ecology of dusky grouper Epinephelus marginatus (Actinopterygii, Epinephelidae) in littoral and neritic habitats of southern Brazil as elucidated by stomach contents and stable isotope analyses. Hydrobiologia 743:109–125.CrossRefGoogle Scholar
  11. Correa, S.B. and K.O. Winemiller. 2014. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95:210–224.CrossRefGoogle Scholar
  12. Day, J.W., B.C. Crump, W.M. Kemp and A. Yáñez-Arancibia. 2012. Estuarine Ecology. Wiley-Blackwell, New Jersey.CrossRefGoogle Scholar
  13. DeNiro, M.J. and S. Epstein. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197:261–263.CrossRefGoogle Scholar
  14. Drake, P., A.M. Arias and L. Gállego. 1984. Biología de los mugílidos (Osteichthyes, Mugilidae) en los esteros de las salinas de San Fernando (Cádiz). III. Hábitos alimentarios y su relación con la morfometría del aparato digestivo. Invest Pesq. 48:337–367.Google Scholar
  15. Dupke, C., C. Bonenfant, B. Reineking, R. Hable, T. Zeppenfeld, M. Ewald and M. Heurich. 2016. Habitat selection by a large herbivore at multiple spatial and temporal scales is primarily governed by food resources. Ecography 40:1014–1027.CrossRefGoogle Scholar
  16. Elliott, M., A.K. Whitfield, I.C. Potter, S.J.M. Blaber, D.P. Cyrus, F.G. Nordlie and T.D. Harrison. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish Fish. 8:241–268.CrossRefGoogle Scholar
  17. Elton, C.S. 1927. Animal Ecology. Sidgwick and Jackson, London, UK.Google Scholar
  18. FsihBase. 2018. http://www.fishbase.org.
  19. Fitzgerald, D.B., K.O. Winemiller, M.H. Sabaj Peréz and L. Sousa. 2017. Using trophic structure to reveal patterns of trait-based community assembly across niche dimensions. Funct. Ecol. 31:1135–1144.CrossRefGoogle Scholar
  20. Fox, L.R. and P.A. Morrow. 1981. Specialization – species property or local phenomenon. Science 211:887–893.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Garcia, A.M., M.A. Bemvenuti, J.P. Vieira, D.M.L.M. Marques, M.D.M. Burns, A. Moresco and M.V. Condini. 2006. Checklist comparison and dominance patterns of the fish fauna at Taim Wetland, South Brazil. Neotrop. Ichthyol. 4:261–268.CrossRefGoogle Scholar
  22. Gerking, S.D. 1994. Feeding Ecology of Fish. 1st ed. Academic Press, San Diego.Google Scholar
  23. Hoeinghaus, D.J., J.P. Vieira, C. Costa, C.E. Benvenuti, K.O. Winemiller and A.M. Garcia. 2011. Estuary hydrogeomorphology affects carbon sources supporting aquatic consumers within and among ecological guilds. Hydrobiologia 673:79–92.CrossRefGoogle Scholar
  24. Jackson, A.L., R. Inger, A.C. Parnell and S. Bearhop. 2011. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80:595–602.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Krebs, C. 1999. Ecological Methodology. 2o ed. California, Addison Wesley Longman.Google Scholar
  26. Layman, C.A., M.S. Araujo, R. Boucek, C.M. Hammerschlag-Peyer, E. Harrison, Z.R. Jud, P. Matich, A.E. Rosenblatt, J.J. Vaudo, L.A. Yeager, D.M. Post and S. Bearhop. 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87:545–562.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Le Loc’h, F., J.D. Durand, K. Diop and J. Panfili. 2015. Spatiotemporal isotopic signatures (δ13C and δ15N) reveal that two sympatric West African mullet species do not feed on the same basal production sources. J. Fish Biol. 86:1444–1453.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lebreton, B., P. Richard, E.P Parlier, G. Guillou and G.F. Blanchard. 2011. Trophic ecology of mullets during their spring migration in a European saltmarsh: A stable isotope study. Estuar. Coast Shelf Sci. 91:502–510.CrossRefGoogle Scholar
  29. Loitzenbauer, E. and C.A.B. Mendes. 2012. Salinity dynamics as a tool for water resources management in coastal zones: An application in the Tramandaí River basin, southern Brazil. Ocean Coast. Manage. 55:52–6.CrossRefGoogle Scholar
  30. Mai, A.C.G., M. L. Santos, V. M. Lemos and J. P. Vieira, JP 2018 Discrimination of habitat use between two sympatric species of mullets, Mugil curema and Mugil liza (Mugiliformes: Mugilidae) in the rio Tramandaí Estuary, determined by otolith chemistry Neotrop. Ichthyol. 16(2): e170045.Google Scholar
  31. Malabarba, L.R., P. Carvalho-Neto, V.A. Bertaco, T.P. Carvalho, J.F. Santos and L.G.S. Artioli. 2013. Guia de Identificação dos Peixes da Bacia do Rio Tramandaí. Via Sapiens: Porto Alegre, BR.Google Scholar
  32. Marais, J.F.K. 1980. Aspects of food intake, food selection, and alimentary canal morphology of Mugil cephalus (Linnaeus 1958), Liza tricuspidens (Smith 1935), L. richardsoni (Smith 1846), and L. dumerili (Steindachner 1869). J. Exp. Mar. Biol. Ecol. 44:193–209.CrossRefGoogle Scholar
  33. Newsome, S.D., C. Martinez Del Rio, S. Bearhop, D.L. Phillips. 2007. A niche for isotopic ecology. Front. Ecol. Environ. 5:429–436.CrossRefGoogle Scholar
  34. Nielsen, J.M., E.L. Clare, B. Hayden, M.T Brett and P. Kratina. 2017. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. DOI: 10.1111/2041-210X.12869.Google Scholar
  35. Odebrecht, C. and V.M.T Garcia. 1997. Coastal and marine environments and their biota: phytoplankton. In: U. Seeliger, C. Odebrecht and J.P Castello (eds.), Subtropical Convergence Environments: The Coast and Sea in the Southwestern Atlantic. Heidelberg: Springer-Verlag. pp. 105–109.Google Scholar
  36. Odebrecht, C, PC. Abreu, C.E. Bemvenuti, M. Coppertino, J.H. Muelbert, J.P. Vieira and U. Seeliger. 2010a. The Patos Lagoon Estuary: biotic responses to natural and anthropogenic impacts in the last decades (1979–2008). In: M. Kennisch and H. Paerl (eds.), Coastal Lagoons: Systems of Natural and Anthropogenic Change. Boca Raton: Taylor & Francis /CRC Press. pp. 437–459.Google Scholar
  37. Odebrecht, C, M. Bergesch, L. Rubi Rörig and PC Abreu. 2010b. Phytoplankton interannual variability at Cassino beach, Southern Brazil (1992 – 2007), with emphasis on the surf zone diatom Asterionellopsis glacialis. Estuar. Coast. 33:570–583.CrossRefGoogle Scholar
  38. Odebrecht, C., D.R. Du Preez, P.C. Abreu and Campbell, E.E. 2014. Surf zone diatoms: A review of the drivers, patterns and role in sandy beaches food chains. Estuar. Coast Shelf Sci. 150:24–35.CrossRefGoogle Scholar
  39. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, PR. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2017. Vegan: Community Ecology Package. R package version 2.4–3. http://CRAN.R-project.org/package=vegan
  40. Osorio-Dualiby, D. 1988. Ecología trófica de Mugil curema, M. incilis y M. liza (Pisces: Mugilidae) en la Ciénaga Grande de Santa Marta, Caribe colombiano. Análisis cualitativo y cuantitativo. An. Inst. Inv Mar. 18:113–126.Google Scholar
  41. Pianka, E.R. 1976. Competition and niche theory. In: R.M. May (eds.), Theoretical Ecology: Principles and Applications. Blackwell Scientific, Oxford, UK. pp. 114–141.Google Scholar
  42. Post, D.M., C.A. Layman, D.A. Arrington, G. Takimoto, J. Quattrochi and C.G. Montanã. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rohlf, F.J. and D.R. Fisher. 1968. Tests for hierarchical structure in random data sets. Syst. Zool. 17:407–412.CrossRefGoogle Scholar
  44. Round, F. E. 1984. The Ecology of Algae. Cambridge University Press, Cambridge.Google Scholar
  45. Seeliger, U. 1997. Seagrass Meadows. In: U. Seeliger, C. Odebrecht and J.P. Castello (eds.), Subtropical Convergence Environments: The Coast and Sea in the Southwestern Atlantic. Springer-Verlag, Heidelberg. pp. 82–85.CrossRefGoogle Scholar
  46. Silva, J.G., L.C. Torgan and L.S. Cardoso. 2010. Diatomáceas (Bacillariophyceae) em marismas no sul do Brasil. Acta Bot. Bras. 24:935–947.CrossRefGoogle Scholar
  47. Stal, L.J. 2001. Coastal microbial mats: the physiology of a smallscale ecosystem. S. Afr. J. Bot. 67:399–410.CrossRefGoogle Scholar
  48. Winemiller, K.O. and C.A. Layman. 2005. Food web science: moving on the path from abstraction to prediction. In: P.C. Ruiter, V. Wolters and J.C. Moore (eds.), Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development and Environmental Change. Elsevier, Amsterdam. pp. 10–23.CrossRefGoogle Scholar
  49. Winemiller, K.O., D.B. Fitzgerald, L.M. Bower and E.R. Pianka. 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18:737–751.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wootton, R.J. 1999. Ecology of Teleost Fishes. 2nd ed. Chapman & Hall, London.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, you give a link to the Creative Commons License, and indicate if changes were made.

Authors and Affiliations

  • A. F. S. Garcia
    • 1
    Email author
  • A. M. Garcia
    • 2
  • S. R. Vollrath
    • 1
  • F. Schneck
    • 3
  • C. F. M. Silva
    • 1
  • Í. J. Marchetti
    • 2
  • J. P. Vieira
    • 2
  1. 1.Programa de Pós-Graduação em Biologia de Ambientes Aquáticos ContinentaisUniversidade Federal do Rio GrandeRio GrandeBrazil
  2. 2.Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil
  3. 3.Instituto de Ciências BiológicasUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations