Advertisement

Community Ecology

, Volume 19, Issue 1, pp 53–66 | Cite as

Leaf decomposition of the macrophyte Eichhornia azurea and associated microorganisms and invertebrates

  • C. Vieira da SilvaEmail author
  • I. BianchiniJr.
  • J. F. GonçalvesJr.
  • R. A. Oliveira
  • R. Henry
Open Access
Article

Abstract

The knowledge of the decomposition of macrophytes and associated organisms is important to understand ecological processes that control aquatic ecosystem metabolism. The aims of the study were: 1) to investigate the structure and composition of the aquatic invertebrate community associated with the decomposition of leaves of the macrophyte Eichhornia azurea over time; 2) to determine the biomass of microorganisms (fungi and bacteria) and their relationship with the associated invertebrate communities; and 3) to assess the relationship between biotic and abiotic variables and invertebrate density. To analyze the decomposition process, leaves of E. azurea were put into litter bags and incubated in Barbosa Lake, São Paulo State, Brazil. Litter bags were retrieved at seven sampling occasions during a 2.5 month period. We measured decomposition rates of leaves, and the associated communities of invertebrates, the biomass of bacteria and fungi, and biotic and abiotic variables that might be associated with the decomposition process. Significant differences were found in the densities of invertebrates. The microorganism biomass also varied significantly throughout the experiment. Fungal biomass (ergosterol concentration) was positively associated with the density of most taxonomic groups of aquatic invertebrates, as well as the total density of invertebrates and their taxonomic richness. Total invertebrate density increased during the experiment, but the taxonomic richness of invertebrates did not follow this pattern. Insecta and Crustacea densities were the main contributors to similarity within the groups formed at each sampling time. The different ways that invertebrates use detritus, such as a food source or a feeding site, as well as their feeding plasticity, may have contributed to the increase in the total invertebrate density over time as decomposition progressed. After two months and a half of macrophyte incubation the loss of E. azurea leaf biomass was less than 4.4% of the initial value. Factors such as decreasing temperature throughout the experiment, possible inhibition of microorganism growth by leachates, the predominantly oligotrophic environment and low abrasion due to the environment lentic regime may have contributed to the low rate of decomposition of E. azurea. Our results suggest that decomposition process in the present study has not begun in fact and/or macrophyte decomposition in nature is much slower than previously thought.

Keywords

Aquatic insects Aquatic macrophytes ATP Ergosterol Lake 

Abbreviations

OM

Organic Matter

AFDM

Ash Free Dry Mass

ATP

Adenosine TriPhosphate

ANOVA

ANalysis Of VAriance

NMDS

Non-metric Multi-Dimensional Scaling

SIMPER

SIMilarity PERcentages

ANOSIM

ANalysis Of SIMilarity

ERG

ERGosterol

BIO

detritus BIOmass

WT

Water Temperature

OSM

Organic Suspended Matter

TN

Total Nitrogen

T

Transparency

DN

Nitrogen in Detritus

DP

Phosphorus in Detritus

Notes

Acknowledgements

The authors are grateful to Fundação do Instituto de Biociências - FUNDIBIO for financially supporting this research; to Hamilton Antonio Rodrigues, Joaquim Nunes da Costa and Lucio Miguel de Oliveira for helping in the field, to Laerte José da Silva for the English language revision, to Jorge Laço Portinho and Adriano Fabbro Gandini for helping in statistical analyses and mapping the study area, respectively. The first author is also grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship received.

References

  1. Abelho, M. 2005. Extraction and Quantification of ATP as a Measure of Microbial Biomass. In: Graça, M.A.S., F. Bärlocher and M.O. Gessner. (eds.), Methods to Study Litter Decomposition: a Practical Guide. Springer, Dordrecht. pp. 223–229.CrossRefGoogle Scholar
  2. Abelho, M., C. Cressa and M. Graça. 2005. Microbial biomass, respiration, and decomposition of Huracrepitans L. (Euphorbiaceae) leaves in a tropical stream. Biotropica, 37(3):397–402.CrossRefGoogle Scholar
  3. Abelho, M., 2009. ATP and ergosterol as indicators of fungal biomass during leaf decomposition in streams: a comparative study. International Review of Hydrobiology 94(1):3–15.CrossRefGoogle Scholar
  4. Albertoni, E.F., L.U. Hepp, C. Carvalho and C. Palma-Silva. 2018. Invertebrate composition in submerged macrophyte debris: habitat and degradation time effects. Ecología Austral 28:093–103.CrossRefGoogle Scholar
  5. Ali, M.M., A.A Mageed and M. Heikal. 2007. Importance of aquatic macrophyte for invertebrate diversity in large subtropical reservoir. Limnologica 37:155–169.CrossRefGoogle Scholar
  6. Bärlocher, F., 1997. Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica 13(2):1–11.Google Scholar
  7. Battle, J.M. and T.B. Mihuc. 2000. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418:123–136.CrossRefGoogle Scholar
  8. Bedford, A.P. 2004. A modified litter bag design for use in lentic habitats. Hydrobiologia 529:187–193.CrossRefGoogle Scholar
  9. Berg H.B. 1995. Larval food and feeding behaviour. In: Armitage P.D., P.S. Cranston and L.C.V. Pinder (eds), The Chironomidae: the biology and ecology of non-biting midges, Chapman and Hall, London, pp 136–168.CrossRefGoogle Scholar
  10. Bianchini Jr., I, R.H. Silva, M.B. Cunha-Santino and R.S. Panhota. 2010. Aerobic and anaerobic decomposition of Pistia stratiotes leachates from a tropical eutrophic reservoir (Barra Bonita, SP, Brazil). Braz. J. Biol. 70(3):559–568.PubMedCrossRefGoogle Scholar
  11. Bianchini Jr., I, M.B. Cunha-Santino, J.U. Ribeiro and D.G.B. Penteado. 2014. Implication of anaerobic and aerobic decomposition of Eichhornia azurea (Sw.) Kunth. on the carbon cycling in a subtropical reservoir. Braz. J. Biol. 74(1):100–110.CrossRefGoogle Scholar
  12. Boyd, C.E. and C.P. Goodyear. 1971. Nutritive quality of food in ecological systems. Archiv für Hydrobiologie 69(2):256–270.Google Scholar
  13. Carvalho, C., L.U. Hepp, C. Palma-Silva and E.F. Albertoni. 2015. Decomposition of macrophytes in a shallow subtropical lake. Limnologica 53:1–9.CrossRefGoogle Scholar
  14. Carvalho, P., S.M. Thomaz and L.M. Bini. 2005. Effects of temperature on decomposition of a potential nuisance species: the submerged aquatic macrophytes Egeria najas Planchon (Hydrocharitaceae). Braz. J. Biol. 65(1):51–60.PubMedCrossRefGoogle Scholar
  15. Clarke, K.R. and R.N. Gorley. 2006. PRIMER v6:User Manual/ Tutorial. Plymouth: PRIMER-E.Google Scholar
  16. Clarke, K. and R. M. Warwick. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth: PRIMER-E.Google Scholar
  17. Cunha-Santino, M.B., I. Bianchini Jr. and M.H. Okawa. 2010. The fate of Eichhornia azurea (Sw.) Kunth. detritus within a tropical reservoir. Acta Limnologica Brasiliensia 22(2):109–121.CrossRefGoogle Scholar
  18. Dahroug, Z., N.F. Santana and N.F. Pagioro. 2016. Eichhornia azurea decomposition and the bacterial dynamic: an experimental research. Braz. J. Microbiol. 47:279–286.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Debastiani-Júnior, J.R., L.M.A. Elmoor-Loureiro and M.G. Nogueira. 2016. Habitat architecture influencing microcrustaceans composition: a case study on freshwater Cladocera (Crustacea Branchiopoda). Braz. J. Biol. 76(1):93–100.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Domínguez, E. and H.R. Fernández. 2009. Macroinvertebrados bentónicos sudamericanos. Fund. Miguel Lillo: Tucumán, Argentina.Google Scholar
  21. Galizzi M.C., F. Zilli and M. Marchese. 2012. Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Paraná River floodplain (Argentina). Iheringia 102(2):117–121.CrossRefGoogle Scholar
  22. Gaur, S., P.K. Singhal and S.K. Hasija. 1992. Relative contributions of bacteria and fungi to water hyacinth decomposition. Aquatic Bot. 43:1–15.CrossRefGoogle Scholar
  23. Gessner, M.O. 2005. Ergosterol as a measure of fungal biomass. In: Graça, M.A.S., F. Bärlocher and M.O. Gessner (eds.), Methods to Study Litter Decomposition: A Pratical Guide. Springer, Dordrecht, pp. 189–195.CrossRefGoogle Scholar
  24. Gessner, M.O., C.M. Swan, C.K. Dang, B.G. McKie, R.D. Bardgett, D.H. Wall and S. Hättenschwiler. 2010. Diversity meets decomposition. Trends Ecol. Evol. 25(6):372–380.PubMedCrossRefGoogle Scholar
  25. Golterman, K.L., R.S., Clymo and M.A.M., Ohmstad. 1978. Methods for Physical and Chemical Analysis of Freshwaters. Oxford: Blackwell Scientific Publications.Google Scholar
  26. Gonçalves, J.F. Jr., F.A. Esteves and M. Callisto. 2003.Chironomids colonization on Nymphaea ampla L. detritus during a degradative ecological succession experiment in a Brazilian coastal lagoon. Acta Limnologica Brasiliensia 15(2):21–27.Google Scholar
  27. Gonçalves, J.F. Jr., J.S. França, A.O. Medeiros, C.A. Rosa and M. Callisto. 2006. Leaf breakdown in a Tropical Stream. Internat. Rev. Hydrobiol. 91(2):164–177.CrossRefGoogle Scholar
  28. Gonçalves, J.F. Jr., M.A.S. Graça, and M. Callisto. 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biol. 52:1440–1451.CrossRefGoogle Scholar
  29. Gonçalves, J.F. Jr., A.M. Santos and F.A. Esteves. 2004. The influence of the chemic Jr. al composition of Typha domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia 527:125–137.Google Scholar
  30. Graça, M.A.S., F. Bärlocher and M.O. Gessner. 2005. Methods to Study Litter Decomposition: a Practical Guide. Springer, Dordrecht.CrossRefGoogle Scholar
  31. Graça, M.A.S. and C. Canhoto. 2006. Leaf litter processing in low order streams. Limnetica 25(1–2):1–10.Google Scholar
  32. Grattan, R.M. and K. Suberkropp. 2001. Effects of nutrient enrichment on yellow poplar leaf decomposition and fungal activity in streams. J. North Am. Benthol. Soc. 20(1):33–43.CrossRefGoogle Scholar
  33. Gulis, V. and K. Suberkropp. 2003. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat. Microbial Ecol. 30(2):149–157.CrossRefGoogle Scholar
  34. Gulis, V. and K. Suberkropp. 2007. Fungi: biomass, production, and sporulation of aquatic hyphomycetes. In: Hauer, F.R. and G.A. Lamberti (eds.), Methods in Stream Ecology. Academic Press, San Diego. pp. 311–325.CrossRefGoogle Scholar
  35. Güsewell, S. and M.O. Gessner. 2009. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct. Ecol. 23:211–219.CrossRefGoogle Scholar
  36. Handa, T., R. Aerts, F. Berendse, M.P. Berg, A. Bruder, O. Butenschoen, E. Chauvet, M.O. Gessner, J. Jabiol, M. Makkonen, B.G. McKie, B. Malmqvist, E.T.H.M. Peeters, S. Scheu, B. Schmid, J. v. Ruijven, V.C.A. Vos and S. Hättenschwiler. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–234.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Henriques-Oliveira A.L., J.L. Nessimian and L.F.M. Dorvillé. 2003. Feeding habits of Chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Braz. J. Biol. 63(2):269–281.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Henry, R., 2005. The connectivity of the Paranapanema River with two lateral lakes in its mouth zone into the Jurumirim reservoir. Acta Limnologica Brasiliensia 17(1):57–69.Google Scholar
  39. Henry-Silva, G.G., M.M. Pezzato, R.F. Benassi and A.F.M. Camargo. 2001. Chemical composition of five species of aquatic macrophytes from lotic ecosystems of the southern coast of the state of São Paulo (Brazil). Acta Limnologica Brasiliensia 13(2):11–17.Google Scholar
  40. Lancaster, J. and B.J. Downes. 2013. Aquatic Entomology. Oxford, United Kingdom.Google Scholar
  41. Levenspiel, O. 1974. Engenharia das reações químicas. Edgard Blücher, São Paulo.Google Scholar
  42. Mackereth, F.I.H., J. Heron and J.F. Talling. 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, London.Google Scholar
  43. Martins, R.T., L.S. Silveira and R.G. Alves. 2011. Colonization by oligochaetes (Annelida: Clitellata) in decomposing leaves of Eichhornia azurea (SW.) Kunth (Pontederiaceae) in a neotropical lentic system. Annales de Limnologie – Internat. J. Limnol. 47:339–346.CrossRefGoogle Scholar
  44. Mille-Lindblom, C. and L.J. Tranvik. 2003. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microbial Ecol. 45:173–182.CrossRefGoogle Scholar
  45. Mille-Lindblom, C., H. Fischer and L.J. Tranvik. 2006. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113:233–242.CrossRefGoogle Scholar
  46. Mormul, R.P., L.A. Vieira, S. Pressinatte Jr., A. Monkolski and A.M. Santos. 2006. Sucessão de invertebrados durante o processo de decomposição de duas plantas aquáticas (Eichhornia azurea e Polygonum ferrugineum). Acta Scientiarum 28(2):109–115.Google Scholar
  47. Olson, J.S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331.CrossRefGoogle Scholar
  48. Padial, A.A. and S.M. Thomaz. 2006. Effects of flooding regime upon the decomposition of Eichhornia azurea (Sw.) Kunth measured on a tropical, flow-regulated floodplain (Paraná River, Brazil). River Res. Appl. 22:791–801.CrossRefGoogle Scholar
  49. Pagioro, T.A. and S.M. Thomaz. 1998. Loss of weight and concentration of carbon, nitrogen, and phosphorus during decomposition of Eichhornia azurea in the floodplain of the upper Paraná river, Brazil. Revista Brasileira de Biologia 58(4):603–608.CrossRefGoogle Scholar
  50. Pagioro T.A. and S.M. Thomaz. 1999. Decomposition of Eichhornia azurea from limnologically different environments of the Upper Paraná River floodplain. Hydrobiologia 411:45–51.CrossRefGoogle Scholar
  51. Poi, A.S.G., M.E. Galassi, R.P. Carnevali and L.I. Gallardo. 2017. Leaf litter and invertebrate colonization: the role of macro consumers in a subtropical wetland (Corrientes, Argentina). Wetlands 37(1):135–143.CrossRefGoogle Scholar
  52. Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery. 2007. Numerical Recipes, the Art of Scientific Computing. Cambridge University Press, New York.Google Scholar
  53. Quintão, J.M.B., R.S. Rezende and J.F. Gonçalves. 2013. Microbial effects in leaf breakdown in tropical reservoirs of different trophic status. Freshwater Sc. 32(3):933–950.CrossRefGoogle Scholar
  54. Rantala, M.V., T.P. Luoto and L. Nevalainen. 2016. Temperature controls organic carbon sequestration in a subartic lake. Scientific Reports 6:1–11.CrossRefGoogle Scholar
  55. Romaní, A.M., H. Fischer, C. Mille-Lindblom and L.J. Tranvik. 2006. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87(10):2559–2569.CrossRefGoogle Scholar
  56. Saito V.S. and A.A. Fonseca-Gessner. 2014. Taxonomic composition and feeding habitats of Chironomidae in Cerrado streams (Southeast Brazil): impacts of land use changes. Acta Limnologica Brasiliensia 26(1):35–46.CrossRefGoogle Scholar
  57. Sales, M.A., J.F. Gonçalves, J.S. Dahora and A.O. Medeiros. 2015. Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: a 1-year study. Microbial Ecol. 69:84–94.CrossRefGoogle Scholar
  58. Sangiorgio, F., M. Pinna and A. Basset. 2004. Inter- and intra-habitat variability of plant detritus decomposition in a transitional environment (Lake Alimini, Adriatic Sea). Chemistry and Ecology 20:353–366.CrossRefGoogle Scholar
  59. Sangiorgio, F., S. Dragan, I. Rosati, L. Teodorof, M. Staras, L. Georgescu and Basset, A. 2008. Decomposition of reed swamp detritus in the Danube Delta: a case study of four eutrophic systems. Transitional Waters Bulletin 2(4):26–27.Google Scholar
  60. Sangiorgio, F., D.S. Glazier, G. Mancinelli and A. Basset. 2010. How can habitat size influence leaf litter decomposition in five mid-Appalachian springs (USA)? The importance of the structure of the detritivorous guild. Hydrobiologia 654:227–236.CrossRefGoogle Scholar
  61. Silva, F.L., H.R.N. Oliveira, S.C. Escarpinati, A.A. Fonseca-Gessner and M.C. Paula. 2011. Colonization of leaf litter of two aquatic macrophytes, Mayaca fluviatilis Aublet and Salvinia auriculata Aublet by aquatic macroinvertebrates in a tropical reservoir. Revista Ambiente and Água 6(1):30–39.CrossRefGoogle Scholar
  62. Silveira L.S., R.T. Martins, G.A. Silveira, R.M. Grazul, D.P. Lobo and R.G. Alves. 2013. Colonization by Chironomidae larvae in decomposition leaves of Eichhornia azurea in a lentic system in southeastern Brazil. J. Insect Sci. 13(20):1–13.CrossRefGoogle Scholar
  63. Song, N., Z.S. Yan, H.Y. Cai and H.L. Jiang. 2013. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiologia 714:131–144.CrossRefGoogle Scholar
  64. Strickland, J.D.H. and T.R.A. Parsons. 1960. Manual of seawater analysis. Bull. Fish. Res. Board Can. 125:1–185.Google Scholar
  65. Stripari, N. de L. and R. Henry. 2002. The invertebrate colonization during decomposition of Eichhornia azurea Kunth in a lateral lake in the mouth zone of Paranapanema River into Jurumirim Reservoir (São Paulo, Brazil). Braz. J. Biol. 62(2):293–310.PubMedCrossRefGoogle Scholar
  66. Taylor, B.R. 1998. Air-drying depresses rates of leaf litter decomposition. Soil Biol. Biochem. 30(3):403–412.CrossRefGoogle Scholar
  67. Taylor, B.R. and F. Bärlocher. 1996. Variable effects of air-drying on leaching losses from tree leaf litter. Hydrobiologia 325:173–182.CrossRefGoogle Scholar
  68. Teixeira, C. and M.B., Kutner. 1962. Plankton studies in a mangrove environment. I – First assessment of standing stock and ecological factors. Boletim do Instituto Oceanográfico 12:101–124.CrossRefGoogle Scholar
  69. Webster, J.R. and E.F. Benfield. 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17:567–594.CrossRefGoogle Scholar
  70. Wetzel, R.G., 1975. Limnology. Saunders, Philadelphia.Google Scholar
  71. Wong, M.K.M, T-K. Goh, I.J. Hodgkiss, K.D. Hyde, V.M. Ranghoo, C.K.M. Tsui, W-H. Ho, W.S.W. Wong and T.K. Yuen. 1998. Role of fungi in freshwater ecosystems. Biodivers. Conserv. 7:1187–1206.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • C. Vieira da Silva
    • 1
    Email author
  • I. BianchiniJr.
    • 2
  • J. F. GonçalvesJr.
    • 3
  • R. A. Oliveira
    • 4
  • R. Henry
    • 1
  1. 1.Departamento de Zoologia, Instituto de BiociênciasUniversidade Estadual Paulista “Julio de Mesquita Filho” (UNESP)Botucatu (SP)Brazil
  2. 2.Departamento de HidrobiologiaUniversidade Federal de São Carlos (UFSCar)São Carlos (SP)Brazil
  3. 3.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade de Brasília (UnB)Brasília (DF)Brazil
  4. 4.Departamento de Bioestatística, Instituto de BiociênciasUniversidade Estadual Paulista “Julio de Mesquita Filho” (UNESP)Botucatu (SP)Brazil

Personalised recommendations