How seasonality and anthropogenic impacts can modulate the structure of aquatic benthic invertebrate assemblages

Abstract

We studied a benthic invertebrate assemblage of a stream that passes through pristine, rural, suburban and urban areas of a municipality located in southeastern Brazil to investigate a possible relationship between this assemblage structure and urbanization. The environmental variables and fauna structure were analyzed in a spatial and temporal scale, sampling the four sites in a dry and wet season. We found a clear spatial pattern, with higher similarity between sites from rural and suburban area that presented intermediate environmental characteristics. The pristine site showed in both seasons the lowest values of alkalinity and fecal coliform. On the other hand, the site located in the urban area showed the lowest concentration of dissolved oxygen and higher of suspended solids, ammonia and fecal coliform. The extreme values of these three variables occurred in the wet season, probably related to the high rainfall values. The benthic invertebrate fauna structure followed the same longitudinal and seasonal pattern found for the environmental variables. The site in urban area showed the lowest richness, diversity and evenness, with a dominance of two groups resistant to adverse environmental conditions (Oligochaeta and Orthocladiinae) and absence of more sensitive groups (Coleoptera, Ephemeroptera and Trichoptera). The increase drag of the substrate and associated invertebrates can be responsible for the lower abundance and richness observed in the wet season. The environmental variables that best defined the differentiation between sites (dissolved oxygen, organic suspended solids and fecal coliform) related directly to urbanization effects, like dump effluents and removal of riparian vegetation.

Abbreviations

acar:

Acarina

amer:

Americabaetis

ANOSIM:

ANalysis Of SIMilarity

Anne:

Annelida

argi:

Argia

baet:

Baetodes

came:

Camelobaetidius

Chel:

Chelicerata

chir:

Chironominae

clad:

Cladocera

Cnid:

Cnidaria

Cole:

Coleoptera

Coll:

Collembola

cope:

Copepoda

Crus:

Crustacea

Dipt:

Diptera

Ephe:

Ephemeroptera

hage:

Hagenulopsis

hete:

Heterelmis

Hete:

Heteroptera

Hexa:

Hexapoda

hiru:

Hirudinea

macr:

Macrelmis

Mega:

Megaloptera

metri:

Metrichia

Moll:

Mollusca

Nema:

Nematoda

Neme:

Nemertea

neoe:

Neoelmis

neot:

Neotrichia

NMDS:

Non-metric Multi-Dimensional Scaling

Odon:

Odonata

olig:

Oligochaeta

orto:

Orthocladiinae

OTU:

Operational Taxonomic Unit

Plat:

Plathyhelminthes

Plec:

Plecoptera

psep:

Psephenus

SIMPER:

SIMilarity PERcentages

simu:

Simuliidae

smic:

Smicridea

tany:

Tanypodinae

thra:

Thraulodes

trav:

Traverhyphes

Tric:

Trichoptera

worm:

Wormaldia

References

  1. Agostinho, A.A., S. Thomaz and L.C. Gomes. 2005. Conservation of the biodiversity of Brazil´s inland waters. Conserv. Biol. 19(3): 646–652.

    Article  Google Scholar 

  2. Allan, J.D. 1995. Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, London.

    Book  Google Scholar 

  3. Azrina, M.Z., C.K. Yap, A. Rahim, A. Ismail and S.G. Tan. 2006. Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotox. Environ. Safe. 64(3): 337– 347.

    CAS  Article  Google Scholar 

  4. Barrella, W., M. Petrere-Jr, W.S. Smith and L.F.A. Montag. 2001. As Relações entre as Matas ciliares, os rios e os peixes. In: R.R. Rodrigues and H.F. Leitão Filho (eds.), Matas ciliares: conservação e recuperação. EDUSP, São Paulo. pp. 187–207.

    Google Scholar 

  5. Bispo, P.C., L.G. Oliveira, L.M. Bini and K.G. Sousa. 2006. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of central Brazil: environmental factors influencing the distribution and abundance of immatures. Braz. J. Biol. 66(2): 611–622.

    CAS  Article  Google Scholar 

  6. Brasil. Resolução CONAMA n. 274. Diário Oficial da União (published on January 25, 2001).

  7. Buss, D.F., D.F. Baptista and J.L. Nessimian. 2003. Bases conceituais para a aplicação de biomonitoramento em programas de avaliação da qualidade da água de rios. Caderno Saúde Pública. 19(2): 465–473.

    Article  Google Scholar 

  8. Callisto, M., M. Moretti and M. Goulart. 2001. Macroinvertebrados bentônicos como ferramenta para avaliar a saúde de riachos. Ver. Bras. Recursos Hídricos 6: 71–82.

    Article  Google Scholar 

  9. Carpenter, S.R., E.H. Stanley and M.J.V. Zanden. 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Env. Resources. 36: 75–99.

    Article  Google Scholar 

  10. Clarke, K.R. and R.M. Gorley. 2006. Primer v6: User manual/tutorial. Primer-E: Plymouth.

    Google Scholar 

  11. CETESB - Companhia Ambiental do Estado de São Paulo. 2013. Qualidade das águas interiores no Estado de São Paulo. Apêndice D - Significado ambiental e sanitário das variáveis de qualidade. São Paulo: Série Relatórios. Accessed in: http://www.cetesb.sp.gov.br.

  12. Cortezzi, S.S., P.C. Bispo, G.P. Paciencia and R.C. Leite. 2009. Influência da ação antrópica sobre a fauna de macroinvertebrados aquáticos em riachos de uma região de cerrado do sudoeste do Estado de São Paulo. Iheringia, Série Zoologia 99: 36–43.

    Article  Google Scholar 

  13. Cunha, D.G.F., W.K. Dodds and M.C. Calijuri. 2011. Defining nutrient and biochemical oxygen demand baselines for tropical rivers and streams in São Paulo State (Brazil): a comparison between reference and impacted sites. Environ. Manage. 48: 945–956.

    Article  Google Scholar 

  14. Domínguez, E. and H.R. Fernández. 2009. Macroinvertebrados bentônicos sudamericanos: sistemática y biologia. Fundación Miguel Lillo, Tucumán.

    Google Scholar 

  15. Golterman, H.L., R.S. Clymo and M.A.M. Ohnstad. 1978. Methods for Physical and Chemical Analysis of Freshwater. Scientific Publications, Oxford.

  16. Gomi, T., R.C. Sidle, S. Noguchi, J.N. Negishi, A.R. Nik and S. Sasaki. 2006. Sediment and wood accumulations in humid tropical headwater streams: effects of logging and riparian buffers. Forest Ecol. Manag. 224: 166–175.

    Article  Google Scholar 

  17. Goulart, M. and M. Callisto. 2003. Bioindicadores de qualidade de água como ferramenta em estudos de impacto ambiental. Revista da FAPAM. 2: 1–9.

    Google Scholar 

  18. Hepp, L.U., R.M. Restello, S.V. Milesi, C. Biasi and J. Molozzi. 2013. Distribution of aquatic insects in urban headwater streams. Acta Limnol. Bras. 25: 1–9.

    Article  Google Scholar 

  19. Hope, A.C.A. 1968. A simplified Monte Carlo significance test procedure. J. R. Stat. Soc. 30: 582–598.

    Google Scholar 

  20. Iliopoulou-Georgudaki, J., V. Kantzaris, P. Katharios, P. Kaspiris, T. Georgiadis and B. Montesantou. 2003. An application of different bioindicators for assessing water quality: a case study in the rivers Alfeios and Pineios (Peloponnisos, Greece). Ecol. Indic. 2(4): 345–360.

    CAS  Article  Google Scholar 

  21. Kikuchi, R.M. and V.S. Uieda. 2005. Composição e distribuição dos macroinvertebrados em diferentes substratos de fundo de um riacho no município de Itatinga, São Paulo, Brasil. Entomol. Vect. 12(2): 193–231.

    Article  Google Scholar 

  22. Leopoldo, P.R. and A.P. Sousa. 1979. Hidrometria. FCA, UNESP, São Paulo.

    Google Scholar 

  23. Lopretto, E.C. and G. Tell. 1995. Ecossistemas de aguas continentales: metodologias para su studio. Tomo III, Ed. Sur, Argentina.

    Google Scholar 

  24. Melo, A.S. and C.G. Froehlich. 2001. Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between two seasons. J. N. Am. Benthol. Soc. 20: 1–16.

    Article  Google Scholar 

  25. Merritt, R.W and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque.

    Google Scholar 

  26. Mesa, L.M., H.R. Fernández and M.V. Manzo. 2009. Seasonal patterns of benthic arthropods in a subtropical Andean basin. Limnologica 39(2): 152–162.

    Article  Google Scholar 

  27. Moore, A.A. and M.A. Palmer. 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol. Appl. 15(4): 1169–1177.

    Article  Google Scholar 

  28. Oliveira, P.C.R., M.G. Nogueira and L.P. Sartori. 2014. Differential environmental impacts on small and medium size rivers from center of São Paulo State, Brazil, and regional management perspectives. Acta Limnol. Bras. 26(4): 404–419.

    Article  Google Scholar 

  29. Pennak, R.W. 1978. Freshwater Invertebrates of the United States. John Wiley & Sons, New York.

    Google Scholar 

  30. Ríos-Touma, B., A.C. Encalada and N. Prat Fornells. 2011. Macroinvertebrates assemblages of an Andean high-altitude tropical stream: the importance of season and flow. Int. Rev. Hydrobiol. 96(6): 667–685.

    Article  Google Scholar 

  31. Schwoerbel, J. 1975. Métodos de hidrobiologia. H. Blume ediciones, Madrid.

    Google Scholar 

  32. Souto, R.M.G., K.G. Facure, L.A. Pavanin and G.B. Jacobucci. 2011. Influence of environmental factors on benthic macroinvertebrate communities of urban streams in Vereda habitats, Central Brazil. Acta Limnol. Bras. 23(3): 293–306.

    Article  Google Scholar 

  33. Tonon, L.A.C., I.G. Branco, G.G. Pieretti, V.J. Seloin, R. Bergamasco, G.S. Madrona, M.M. Moura and M.R.S. Scapim. 2013. Análise de Parâmetros de qualidade da água para consumo humano. Rev. Tecnol. 22: 35–41.

    Google Scholar 

  34. Uieda, V.S. and I.C.S.M. Gajardo. 1996. Macroinvertebrados perifíticos encontrados em poções e corredeiras de um riacho. Naturalia, São Paulo 21: 31–47.

    Google Scholar 

  35. Vasconcelos, M.C. and A.S. Melo. 2008. An experimental test of the effects of inorganic sediment addition on benthic macroinvertebrates of a subtropical stream. Hydrobiologia 610: 321–329.

    Article  Google Scholar 

  36. Watzen, K.M. 2006. Physical pollution: effects of gully erosion on benthic invertebrates in a tropical clear-water stream. Aquat. Conserv. 16(7): 733–749.

    Article  Google Scholar 

  37. Yokoyama, E., G.P. Paciencia, P.C. Bispo, L.G. Oliveira and P.C. Bispo. 2012. A sazonalidade ambiental afeta a composição faunística de Ephemeroptera e Trichoptera em um riacho de Cerrado do Sudeste do Brasil? Ambiência 8: 73–84.

    Article  Google Scholar 

  38. Yule, C.M., J.Y. Gan, T. Jinggut and K.V. Lee. 2015. Urbanization affects food webs and leaf-litter decomposition in a tropical stream in Malaysia. Freshwater Sci. 34(2): 702–715.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Uieda.

Electronic supplementary material

42974_2017_1801047_MOESM1_ESM.pdf

Supplementary material, approximately 10 KB.

42974_2017_1801047_MOESM2_ESM.pdf

Supplementary material, approximately 38 KB.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uieda, V.S., Iwai, M.L.B., Ono, E.R. et al. How seasonality and anthropogenic impacts can modulate the structure of aquatic benthic invertebrate assemblages. COMMUNITY ECOLOGY 18, 47–55 (2017). https://doi.org/10.1556/168.2017.18.1.6

Download citation

Keywords

  • Aquatic insects
  • Brazilian stream
  • Environmental degradation
  • Urbanization

Nomenclature

  • Domínguez and Fernandez (2009)