Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies?

Abstract

Conservation of species is often focused either only on those that are endangered, or on maximising the number recorded on species lists. However, species share space and time with others, thus interacting and building frameworks of relationships that can be unravelled by community-level network analysis. It is these relationships that ultimately drive ecosystem function via the transfer of energy and nutrients. However interactions are rarely considered in conservation planning. Network analysis can be used to detect key species (“hubs”) that play an important role in cohesiveness of networks. We applied this approach to plant-pollinator communities on two montane Northern Apennine grasslands, paying special attention to the modules and the identity of hubs. We performed season-wide sampling and then focused the network analyses on time units consistent with plant phenology. After testing for significance of modules, only some modules were found to be significantly segregated from others. Thus, networks were organized around a structured core of modules with a set of companion species that were not organized into compartments. Using a network approach we obtained a list of important plant and pollinator species, including three Network Hubs of utmost importance, and other hubs of particular biogeographical interest. By having a lot of links and high partner diversity, hubs should convey stability to networks. Due to their role in the networks, taking into account such key species when considering the management of sites could help to preserve the greatest number of interactions and thus support many other species.

Abbreviations

PC:

Pheno-Cluster

PCA:

Principal Component Analysis

References

  1. Albert, R., H. Jeong and A.L. Barabasi. 2000. Error and attack tolerance of complex networks. Nature 406: 378–382.

    Article  CAS  Google Scholar 

  2. Almeida-Neto, M., P. Guimarães, P.R. Guimarães, R.D. Loyola and W. Ulrich. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117: 1227–1239.

    Article  Google Scholar 

  3. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26: 32–46.

    Google Scholar 

  4. Arroyo, M.T.K., J.J. Armesto and R.B. Primack. 1985. Community studies in pollination ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst. Evol. 149: 187–203.

    Article  Google Scholar 

  5. Barcella, M. 2013. Montane grasslands of the Northern Apennine: syntaxonomy, synchorology, sinecology, pasture analysis and pasture modeling. Unpublished PhD thesis. Università di Pavia.

  6. Bascompte, J., P. Jordano and J.M. Olesen. 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431–433.

    Article  CAS  Google Scholar 

  7. Basilio, A.M., D. Medan, J.P. Torretta and N.J. Bartoloni. 2006. A year-long plant-pollinator network. Austral Ecol. 31: 975–983.

    Article  Google Scholar 

  8. Blüthgen, N., F. Menzel and N. Blüthgen. 2006. Measuring specialization in species interaction networks. BMC Ecol. 6: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burgos, E., H. Ceva, R.P.J. Perazzo, M. Devoto, D. Medan, M. Zimmermann and A. María Delbue. 2007. Why nestedness in mutualistic networks? J. Theor. Biol. 249: 307–313.

    Article  Google Scholar 

  10. Corbet, S. A. 2000. Conserving compartments in pollination webs. Conserv. Biol. 14: 1229–1231.

    Article  Google Scholar 

  11. de Jong, Y., M. Verbeek, V. Michelsen, P.d.P. Bjørn, W. Los, F. Steeman, N. Bailly et al. 2014. Fauna Europaea–all European animal species on the web. Biodiversity Data Journal 2: e4034.

    Article  Google Scholar 

  12. Dormann, C.F., B. Gruber and J. Fruend. 2008. Introducing the bipartite package: Analysing ecological networks. R news 8: 8–11.

    Google Scholar 

  13. Dormann, C.F. and R. Strauss. 2014. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5: 90–98.

    Article  Google Scholar 

  14. Dupont, Y.L., D.M. Hansen and J.M. Olesen. 2003. Structure of a plant–flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26: 301–310.

    Article  Google Scholar 

  15. Faegri, K. and L. van der Pijl. 1979. The Principles of Pollination Ecology. Pergamon Press, Paris.

    Google Scholar 

  16. Fang, Q. and S.-Q. Huang. 2012. Relative stability of core groups in pollination networks in a biodiversity hotspot over four years. PLoS ONE 7: e32663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fantinato, E., S. Del Vecchio, A. Slaviero, L. Conti, A.T.R. Acosta and G. Buffa. 2016. Does flowering synchrony contribute to the sustainment of dry grassland biodiversity? Flora - Morphol. Distrib. Funct. Ecol. Plants 222: 96–103.

    Article  Google Scholar 

  18. Goulson, D., E. Nicholls, C. Botías and E.L. Rotheray. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347: 1255957.

    Article  CAS  Google Scholar 

  19. Guimarães, P.R. and P. Guimarães. 2006. Improving the analyses of nestedness for large sets of matrices. Environ. Model. Softw. 21: 1512–1513.

    Article  Google Scholar 

  20. Guimerà, R. and L. A. N. Amaral. 2005. Functional cartography of complex metabolic networks. Nature 433: 895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guimerà, R., M. Sales-Pardo and L.A.N. Amaral. 2007. Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3: 63–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammer, Ø., D.A.T. Harper and P.D. Ryan. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontol. Electrónica 4: 1–9.

    Google Scholar 

  23. Hegland, S.J., A. Nielsen, A. Lázaro, A.-L. Bjerknes and Ø. Totland. 2009. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12: 184–195.

    Article  Google Scholar 

  24. Janzen, D.H. 1974. The deflowering of Central America. La deforestación de Centroamérica. Nat. Hist. 83: 48–53.

    Google Scholar 

  25. Jeong, H., S.P. Mason, A.-L. Barabási and Z.N. Oltvai. 2001. Lethality and centrality in protein networks. Nature 411: 41–42.

    Article  CAS  Google Scholar 

  26. Jordano, P., J. Bascompte and J.M. Olesen. 2006. The ecological consequences of complex topology and nested structure in pollination webs. In: N.M. Waser and J. Ollerton (eds.), Plant-Pollinator Interactions: From Specialization to Generalization. University of Chicago Press, Chicago. pp. 173–199.

    Google Scholar 

  27. Kaiser-Bunbury, C.N. and N. Blüthgen. 2015. Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB Plants 7: plv076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaiser-Bunbury, C.N., S. Muff, J. Memmott, C.B. Müller and A. Caflisch. 2010. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13: 442–452.

    Article  Google Scholar 

  29. Larson, D.L., S. Droege, P.A. Rabie, J.L. Larson, J. Devalez, M. Haar and M. McDermott-Kubeczko. 2014. Using a network modularity analysis to inform management of a rare endemic plant in the northern Great Plains, USA. J. Appl. Ecol. 51: 1024–1032.

    Article  Google Scholar 

  30. Martín González, A.M., S. Allesina, A. Rodrigo and J. Bosch. 2012. Drivers of compartmentalization in a Mediterranean pollination network. Oikos 121: 2001–2013.

    Article  Google Scholar 

  31. Martín González, A.M., B. Dalsgaard and J.M. Olesen. 2010. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7: 36–43.

    Article  Google Scholar 

  32. Miller-Struttmann, N.E. and C. Galen. 2014. High-altitude multi-taskers: bumble bee food plant use broadens along an altitudinal productivity gradient. Oecologia 176: 1033–1045.

    Article  Google Scholar 

  33. Olesen, J.M., J. Bascompte, Y.L. Dupont and P. Jordano. 2007. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 104: 19891–19896.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Olesen, J.M. and P. Jordano. 2002. Geographic patterns in plant–pollinator mutualistic networks. Ecology 83: 2416–2424.

    Google Scholar 

  35. Ollerton, J., H. Erenler, M. Edwards and R. Crockett. 2014. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346: 1360–1362.

    Article  CAS  Google Scholar 

  36. Ollerton, J., R. Winfree and S. Tarrant. 2011. How many flowering plants are pollinated by animals? Oikos 120: 321–326.

    Article  Google Scholar 

  37. Paraskevopoulou, S., N. Monokrousos, I. Kappas and T.J. Abatzopoulos. 2015. Spatio-temporal variability of benthic macrofauna in a coastal lagoon assessed by ecological interaction networks. Community Ecol. 16: 10–22.

    Article  Google Scholar 

  38. Pozsgai, G., J. Baird, N.A. Littlewood, R.J. Pakeman and M. Young. 2015. Interspecific networks in ground beetle (Coleoptera: Carabidae) assemblages. Ecol. Indic. 68: 134–141.

    Article  Google Scholar 

  39. Ramos-Jiliberto, R., D. Domínguez, C. Espinoza, G. López, F.S. Valdovinos, R.O. Bustamante and R. Medel. 2010. Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol. Complex. 7: 86–90.

    Article  Google Scholar 

  40. Rasmussen, C., Y.L. Dupont, J.B. Mosbacher, K. Trøjelsgaard and J.M. Olesen. 2013. Strong impact of temporal resolution on the structure of an ecological network. PLoS ONE 8: e81694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reis, S.D.S., Y. Hu, A. Babino, J.S. Andrade Jr, S. Canals, M. Sigman and H.A. Makse. 2014. Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10: 762–767.

    Article  CAS  Google Scholar 

  42. Reitan, T. and A. Nielsen. 2016. Do not divide count data with count data; A story from pollination ecology with implications beyond. PLOS ONE 11: e0149129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rivera-Hutinel, A., R.O. Bustamante, V.H. Marín and R. Medel. 2012. Effects of sampling completeness on the structure of plant–pollinator networks. Ecology 93: 1593–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Santamaría, S., J. Galeano, J.M. Pastor and M. Méndez. 2016. Removing interactions, rather than species, casts doubt on the high robustness of pollination networks. Oikos 125: 526–534.

    Article  Google Scholar 

  45. Seifert, B. 2004 The “Black Bog Ant” Formica picea Nylander, 1846–a species different from Formica candida Smith, 1878 (Hymenoptera: Formicidae). Myrmecologische Nachrichten 6: 29–38.

    Google Scholar 

  46. Tarrant, S., J. Ollerton, M.L. Rahman, J. Tarrant and D. McCollin. 2013. Grassland restoration on landfill sites in the East Midlands, United Kingdom: an evaluation of floral resources and pollinating insects. Restor. Ecol. 21: 560–568.

    Article  Google Scholar 

  47. The Plant List. 2013. Version 1.1. Published on the Internet; http://www.theplantlist.org/. Accessed on June 20th 2016.

  48. Tylianakis, J.M., E. Laliberté, A. Nielsen and J. Bascompte. 2010. Conservation of species interaction networks. Biol. Conserv. 143: 2270–2279.

    Article  Google Scholar 

  49. Valverde, J., J.M. Gómez and F. Perfectti. 2016. The temporal dimension in individual-based plant pollination networks. Oikos 125: 468–479.

    Article  Google Scholar 

  50. Verde, S., S. Assini and C. Andreis. 2010. Le serie di Vegetazione della regione Lombardia. In: C. Blasi (ed.), La Vegetazione d’Italia. Palombi & Partner, Roma. pp. 53–82.

    Google Scholar 

  51. Viterbi, R., C. Cerrato, B. Bassano, R. Bionda, A. Hardenberg, A. Provenzale and G. Bogliani. 2013. Patterns of biodiversity in the northwestern Italian Alps: a multi-taxa approach. Community Ecol. 14: 18–30.

    Article  Google Scholar 

  52. Watts, S., C.F. Dormann, A.A.M. González and J. Ollerton. 2016. The influence of floral traits on specialisation and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes. Ann. Bot. doi: 10.1093/aob/mcw114.

  53. Zhao, Y.-H., Z.-X. Ren, A. Lázaro, H. Wang, P. Bernhardt, H.-D. Li and D.-Z. Li. 2016. Floral traits influence pollen vectors’ choices in higher elevation communities in the Himalaya-Hengduan Mountains. BMC Ecol. 16: 26.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Biella.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biella, P., Ollerton, J., Barcella, M. et al. Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies?. COMMUNITY ECOLOGY 18, 1–10 (2017). https://doi.org/10.1556/168.2017.18.1.1

Download citation

Keywords

  • Community analysis
  • Connectance
  • Ecological network
  • Grassland
  • Habitat management
  • Hub
  • Modularity
  • Nestedness
  • Phenology
  • Pollination

Nomenclature

  • The Plant List (2013) for plants
  • Seifert (2004) for Hymenoptera: Formicidae and de Jong et al. (2014) for other insects