Patterns or mechanisms? Bergmann’s and Rapoport’s rule in moths along an elevational gradient

Abstract

Bergmann’s rule predicts increasing body sizes at higher elevations. The elevational Rapoport’s rule predicts an increase of elevational range size with higher elevations. Both rules have often been related to effects of temperature. Larger bodies allow more efficient heat preservation at lower temperature, explaining Bergmann’s rule. Higher temperature variability may select for adaptations that allow increased range sizes, explaining Rapoport’s rule. The generality of both rules has been challenged and evidence towards explanatory mechanisms has been equivocal. We investigated temperature and its variability as explanations for Bergmann’s and Rapoport’s rule in moths along an elevation gradient in Switzerland. In particular, we tested for relationships between elevation, temperature and body size across almost 300 species of Macrolepidoptera along a gradient from 600 to 2400 m a.s.l. The gradient was resampled throughout the vegetation season, which allowed assessing temperature effects independently from elevation. We controlled analyses for covariate traits of moths and their phylogeny. We found a positive relationship between body size and elevation, but no link with temperature. Furthermore, there was no positive link between average elevation and elevational range, but there was between temperature variability and elevational range. We conclude that mechanisms other than temperature can lead to increasing body sizes with elevation (supporting Bergmann’s pattern, but not the mechanism). Contrary to that, data support the mechanism for Rapoport’s rule: high temperature variability is associated with large ranges. However, because temperature variability is not necessarily increasing with elevation, it may not always lead to the geographic pattern predicted.

Abbreviations

AIC:

Akaike’s Information Criterion

CO1:

Cytochrome Oxidase subunit 1

MaxLRT:

Maximum Local Temperature Range (experienced by a species)

OLS:

Ordinary Least Squares

PCoA:

Principal Coordinates Analysis

pGLS:

phylogenetic Generalized Least Squares

GLM:

Generalized Linear Model

t_range:

temperature range (experienced by a species)

References

  1. Albert, C.H., W. Thuiller, N.G. Yoccoz, A. Soudant, F. Boucher, P. Saccone and S. Lavorel. 2010. Intraspecific functional variability: extent, structure and sources of variation. J. Ecol. 98: 604–613.

    Article  Google Scholar 

  2. APG–Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121.

    Article  Google Scholar 

  3. Ashton, K.G. and C.R. Feldman. 2003. Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57: 1151–1163.

    Article  Google Scholar 

  4. Beck, J., F. Altermatt, R. Hagmann and S. Lang. 2010. Seasonality in the altitude–diversity pattern of Alpine moths. Basic Appl. Ecol. 11: 714–722.

    Article  Google Scholar 

  5. Bergmann, C. 1848. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 1: 595–708.

    Google Scholar 

  6. Blackburn, T.M. and B.A. Hawkins. 2004. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27: 715–724.

    Article  Google Scholar 

  7. Brehm, G. and K. Fiedler. 2004. Bergmann’s rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Glob. Ecol. Biogeogr. 13: 7–14.

    Article  Google Scholar 

  8. Brehm, G., P. Strutzenberger and K. Fiedler. 2013. Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography 36: 1247–1253.

    Article  Google Scholar 

  9. Brown, J.H. and B.A. Maurer. 1989. Macroecology: The division of food and space among species on continents. Science 243: 1145–1150.

    Article  CAS  Google Scholar 

  10. Burnham K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer, Berlin.

  11. Casey, T.M. and B.A. Joos. 1983. Morphometrics, conductance, thoracic temperature, and flight energetics of noctuid and geometrid moths. Physiol. Zool. 56: 160–173.

    Article  Google Scholar 

  12. Chown, S.L., A. Addo-Bediako and K.J. Gaston. 2002. Physiological variation in insects: large-scale patterns and their implications. Comp. Biochem. Physiol. (B) 131: 587–602.

    Article  CAS  Google Scholar 

  13. Colwell, R.K. and G.C. Hurtt. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 144: 570–595.

    Article  Google Scholar 

  14. Davies, R.B., E. Ounap, J. Javois, P. Gerhold and T. Tammaru. 2012. Degree of specialization is related to body size in herbivorous insects: a phylogenetic confirmation. Evolution 67: 583–589.

    Article  Google Scholar 

  15. Diniz-Filho, J.A.F., M.Á. Rodríguez, L.M. Bini, M.Á. Olalla-Tarraga, M. Cardillo, J.C. Nabout, J. Hortal and B.A. Hawkins. 2009. Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. J. Biogeogr. 36: 2222–2236.

    Article  Google Scholar 

  16. Dynesius, M. and R. Jansson. 2000. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Nat. Acad. Sci. (USA) 97: 9115–9120.

    Article  CAS  Google Scholar 

  17. Fischer, K. and K. Fiedler. 2002. Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis. Evol. Ecol. 16: 333–349.

    Article  Google Scholar 

  18. Forstmeier W. and H. Schielzeth. 2011. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65: 47–55.

    Article  Google Scholar 

  19. Gaston, K.J. and S.L. Chown. 2013. Macroecological patterns in insect body size. In: F.A. Smith and S.K. Lyons (eds.), Animal Body Size: Linking Pattern and Process across Space, Time and Taxonomic Group. University of Chicago Press, Chicago. pp. 13–61.

    Google Scholar 

  20. Heinrich, B. 1993. The Hot-blooded Insects: Strategies and Mechanisms of Thermoregulation. Harvard University Press, Cambridge.

    Book  Google Scholar 

  21. Hu, J.H., F. Xie, C. Li and J.P. Jiang. 2011. Elevational patterns of species richness, range and body size for spiny frogs. PLoS One 6: e19817.

  22. Jackson, L.S. and P.M. Forster. 2010. An empirical study of geographic and seasonal variations in diurnal temperature range. J. Climate 23: 3205–3221.

    Article  Google Scholar 

  23. Janzen, D.H. 1967. Why mountain passes are higher in the tropics. Am. Nat. 101: 233–249.

    Article  Google Scholar 

  24. Kingsolver, J.G., H. A. Woods, L.B. Buckley, K.A. Potter, H.J. MacLean and J.K. Higgins. 2011. Symposium. Complex life cycles and the responses of insects to climate change, 14 pp. Integr. Comp. Biol., Oxford Univ. Press. doi: 10.1093/icb/icr015.

  25. Lee, S.Y., G.R. Scott and W.K. Milsom. 2008. Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose? Comp. Biochem. Physiol. (C) 148: 324–331.

    Google Scholar 

  26. Linacre, E. 1982. The effect of altitude on the daily range of temperature. J. Climatol. 2: 375–382.

    Article  Google Scholar 

  27. Lindstroem, J., L. Kaila and P. Niemelä. 1994. Polyphagy and adult body size in geometrid moths. Oecologia 98: 130–132.

    Article  Google Scholar 

  28. Longino, J.T. and R.K. Colwell. 2011. Density compensation, species composition, and richness of ants on a Neotropical elevational gradient. Ecosphere 2: art29.

    Article  Google Scholar 

  29. Luke J., H., J.T. Weir, C. D. Brock, R.E. Glor and W. Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131.

    Article  CAS  Google Scholar 

  30. McCain, C.M. and K.B. Knight. 2013. Elevational Rapoport’s rule is not pervasive on mountains. Glob. Ecol. Biogeogr. 22: 750–759.

    Article  Google Scholar 

  31. McCain, C.M. 2009. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecol. Lett. 12: 550–560.

    Article  Google Scholar 

  32. Meiri, S. 2010. Bergmann’s rule – what’s in a name? Glob. Ecol. Biogeogr. 20: 203–207.

    Article  Google Scholar 

  33. Merckx, T. and E.M. Slade. 2014. Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Ins. Cons. Divers. 7: 453–461.

    Article  Google Scholar 

  34. Olalla-Tárraga, M.A. and M.A. Rodriguez. 2007. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16: 606–617.

    Article  Google Scholar 

  35. Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zool. Scr. 26: 331–348.

    Article  Google Scholar 

  36. Paradis, E., J. Claude and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Regier, J.C., C. Mitter, A. Zwick, A.L. Bazinet, M.P. Cummings, A.Y. Kawahara, J.-C. Sohn, D.J. Zwickl, S. Cho, D.R. Davis, J. Baixeras, J. Brown, C. Parr, S. Weller, D.C. Lees and K.T. Mitter. 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One 8: e58568.

    Article  CAS  Google Scholar 

  38. Rodríguez, M.Á., M.Á. Olalla-Tárraga and B.A. Hawkins. 2008. Bergmann’s rule and the geography of mammal body size in the Western Hemisphere. Glob. Ecol. Biogeogr. 17: 274–283.

    Article  Google Scholar 

  39. Ruggiero, A. and B.A. Hawkins. 2006. Mapping macroecology. Glob. Ecol. Biogeogr. 15: 433–437.

    Article  Google Scholar 

  40. Sandel, B., L. Arge, B. Dalsgaard, R.G. Davies, K.J. Gaston, W.J. Sutherland and J.-C. Svenning. 2011. The influence of late quaternary climate-change velocity on species endemism. Science 334: 660–664.

    Article  CAS  Google Scholar 

  41. Sanders, N.J. 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25: 25–32.

    Article  Google Scholar 

  42. Stevens, G.C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133: 240– 256.

    Article  Google Scholar 

  43. Stevens, G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am. Nat. 140: 893–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sullivan, J.B. and W.E. Miller. 2007. Intraspecific body size variation in Macrolepidoptera as related to altitude of capture site and seasonal generation. J. Lepidopt. Soc. 61: 72–77.

    Google Scholar 

  45. Tomašových, A., D. Jablonski, S.K. Berke, A.Z. Krug and J.W. Valentine. 2015. Nonlinear thermal gradients shape broad-scale patterns in geographic range size and can reverse Rapoport’s rule. Glob. Ecol. Biogeogr. 24: 157–167.

    Article  Google Scholar 

  46. Truxa, C. and K. Fiedler. 2012. Attraction to light – from how far do moths (Lepidoptera) return to weak artificial sources of light? Europ. J. Entomol. 109: 77–84.

    Google Scholar 

  47. Watt, C., S. Mitchell and V. Salewski. 2010. Bergmann’s rule: a concept cluster? Oikos 119: 89–100.

    Article  Google Scholar 

  48. Wiens, J.J., D.D. Ackerly, A.P. Allen, B.L. Anacker, L.B. Buckley, H.V. Cornell, E.I. Damschen, T.J. Davies, J.-A. Grytnes, S.P. Harrison, B.A. Hawkins, R.D. Holt, C.M. McCain and P.R. Stephens. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13: 1310–1324.

    Article  Google Scholar 

  49. Woods, H.A. 2013. Ontogenetic changes in the body temperature of an insect herbivore. Funct. Ecol. 27: 1322–1331.

    Article  Google Scholar 

  50. Zamora-Camacho, F.J., S. Reguera and G. Moreno-Rueda. 2014. Bergmann’s rule rules body size in an ectotherm: heat conservation in a lizard along a 2200-metre elevational gradient. J. Evol. Biol. 27: 2820–2828.

    Article  CAS  Google Scholar 

  51. Zuo, W., M.E. Moses, G.B. West, C. Hou and J.H. Brown. 2012. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc. Roy. Soc. (B) 279: 1840– 1846.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Beck.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beck, J., Liedtke, H.C., Widler, S. et al. Patterns or mechanisms? Bergmann’s and Rapoport’s rule in moths along an elevational gradient. COMMUNITY ECOLOGY 17, 137–148 (2016). https://doi.org/10.1556/168.2016.17.2.2

Download citation

Keywords

  • Altitude
  • Body size
  • Elevation
  • Macrolepidoptera
  • Range size
  • Temperature variability