Advertisement

Community Ecology

, Volume 17, Issue 2, pp 137–148 | Cite as

Patterns or mechanisms? Bergmann’s and Rapoport’s rule in moths along an elevational gradient

  • J. BeckEmail author
  • H. C. Liedtke
  • S. Widler
  • F. Altermatt
  • S. P. Loader
  • R. Hagmann
  • S. Lang
  • K. Fiedler
Article

Abstract

Bergmann’s rule predicts increasing body sizes at higher elevations. The elevational Rapoport’s rule predicts an increase of elevational range size with higher elevations. Both rules have often been related to effects of temperature. Larger bodies allow more efficient heat preservation at lower temperature, explaining Bergmann’s rule. Higher temperature variability may select for adaptations that allow increased range sizes, explaining Rapoport’s rule. The generality of both rules has been challenged and evidence towards explanatory mechanisms has been equivocal. We investigated temperature and its variability as explanations for Bergmann’s and Rapoport’s rule in moths along an elevation gradient in Switzerland. In particular, we tested for relationships between elevation, temperature and body size across almost 300 species of Macrolepidoptera along a gradient from 600 to 2400 m a.s.l. The gradient was resampled throughout the vegetation season, which allowed assessing temperature effects independently from elevation. We controlled analyses for covariate traits of moths and their phylogeny. We found a positive relationship between body size and elevation, but no link with temperature. Furthermore, there was no positive link between average elevation and elevational range, but there was between temperature variability and elevational range. We conclude that mechanisms other than temperature can lead to increasing body sizes with elevation (supporting Bergmann’s pattern, but not the mechanism). Contrary to that, data support the mechanism for Rapoport’s rule: high temperature variability is associated with large ranges. However, because temperature variability is not necessarily increasing with elevation, it may not always lead to the geographic pattern predicted.

Keywords

Altitude Body size Elevation Macrolepidoptera Range size Temperature variability 

Abbreviations

AIC

Akaike’s Information Criterion

CO1

Cytochrome Oxidase subunit 1

MaxLRT

Maximum Local Temperature Range (experienced by a species)

OLS

Ordinary Least Squares

PCoA

Principal Coordinates Analysis

pGLS

phylogenetic Generalized Least Squares

GLM

Generalized Linear Model

t_range

temperature range (experienced by a species)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2016_1702137_MOESM1_ESM.csv (98 kb)
Supplementary material, approximately 100 KB.
42974_2016_1702137_MOESM2_ESM.pdf (740 kb)
Electronic Supplement for Beck et al., Patterns or mechanisms? Bergmann’s and Rapoport’s rule in moths along an elevational gradient

References

  1. Albert, C.H., W. Thuiller, N.G. Yoccoz, A. Soudant, F. Boucher, P. Saccone and S. Lavorel. 2010. Intraspecific functional variability: extent, structure and sources of variation. J. Ecol. 98: 604–613.CrossRefGoogle Scholar
  2. APG–Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121.CrossRefGoogle Scholar
  3. Ashton, K.G. and C.R. Feldman. 2003. Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57: 1151–1163.CrossRefGoogle Scholar
  4. Beck, J., F. Altermatt, R. Hagmann and S. Lang. 2010. Seasonality in the altitude–diversity pattern of Alpine moths. Basic Appl. Ecol. 11: 714–722.CrossRefGoogle Scholar
  5. Bergmann, C. 1848. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 1: 595–708.Google Scholar
  6. Blackburn, T.M. and B.A. Hawkins. 2004. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27: 715–724.CrossRefGoogle Scholar
  7. Brehm, G. and K. Fiedler. 2004. Bergmann’s rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Glob. Ecol. Biogeogr. 13: 7–14.CrossRefGoogle Scholar
  8. Brehm, G., P. Strutzenberger and K. Fiedler. 2013. Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography 36: 1247–1253.CrossRefGoogle Scholar
  9. Brown, J.H. and B.A. Maurer. 1989. Macroecology: The division of food and space among species on continents. Science 243: 1145–1150.CrossRefGoogle Scholar
  10. Burnham K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer, Berlin.Google Scholar
  11. Casey, T.M. and B.A. Joos. 1983. Morphometrics, conductance, thoracic temperature, and flight energetics of noctuid and geometrid moths. Physiol. Zool. 56: 160–173.CrossRefGoogle Scholar
  12. Chown, S.L., A. Addo-Bediako and K.J. Gaston. 2002. Physiological variation in insects: large-scale patterns and their implications. Comp. Biochem. Physiol. (B) 131: 587–602.CrossRefGoogle Scholar
  13. Colwell, R.K. and G.C. Hurtt. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 144: 570–595.CrossRefGoogle Scholar
  14. Davies, R.B., E. Ounap, J. Javois, P. Gerhold and T. Tammaru. 2012. Degree of specialization is related to body size in herbivorous insects: a phylogenetic confirmation. Evolution 67: 583–589.CrossRefGoogle Scholar
  15. Diniz-Filho, J.A.F., M.Á. Rodríguez, L.M. Bini, M.Á. Olalla-Tarraga, M. Cardillo, J.C. Nabout, J. Hortal and B.A. Hawkins. 2009. Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. J. Biogeogr. 36: 2222–2236.CrossRefGoogle Scholar
  16. Dynesius, M. and R. Jansson. 2000. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Nat. Acad. Sci. (USA) 97: 9115–9120.CrossRefGoogle Scholar
  17. Fischer, K. and K. Fiedler. 2002. Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis. Evol. Ecol. 16: 333–349.CrossRefGoogle Scholar
  18. Forstmeier W. and H. Schielzeth. 2011. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65: 47–55.CrossRefGoogle Scholar
  19. Gaston, K.J. and S.L. Chown. 2013. Macroecological patterns in insect body size. In: F.A. Smith and S.K. Lyons (eds.), Animal Body Size: Linking Pattern and Process across Space, Time and Taxonomic Group. University of Chicago Press, Chicago. pp. 13–61.CrossRefGoogle Scholar
  20. Heinrich, B. 1993. The Hot-blooded Insects: Strategies and Mechanisms of Thermoregulation. Harvard University Press, Cambridge.CrossRefGoogle Scholar
  21. Hu, J.H., F. Xie, C. Li and J.P. Jiang. 2011. Elevational patterns of species richness, range and body size for spiny frogs. PLoS One 6: e19817.Google Scholar
  22. Jackson, L.S. and P.M. Forster. 2010. An empirical study of geographic and seasonal variations in diurnal temperature range. J. Climate 23: 3205–3221.CrossRefGoogle Scholar
  23. Janzen, D.H. 1967. Why mountain passes are higher in the tropics. Am. Nat. 101: 233–249.CrossRefGoogle Scholar
  24. Kingsolver, J.G., H. A. Woods, L.B. Buckley, K.A. Potter, H.J. MacLean and J.K. Higgins. 2011. Symposium. Complex life cycles and the responses of insects to climate change, 14 pp. Integr. Comp. Biol., Oxford Univ. Press. doi: 10.1093/icb/icr015.Google Scholar
  25. Lee, S.Y., G.R. Scott and W.K. Milsom. 2008. Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose? Comp. Biochem. Physiol. (C) 148: 324–331.Google Scholar
  26. Linacre, E. 1982. The effect of altitude on the daily range of temperature. J. Climatol. 2: 375–382.CrossRefGoogle Scholar
  27. Lindstroem, J., L. Kaila and P. Niemelä. 1994. Polyphagy and adult body size in geometrid moths. Oecologia 98: 130–132.CrossRefGoogle Scholar
  28. Longino, J.T. and R.K. Colwell. 2011. Density compensation, species composition, and richness of ants on a Neotropical elevational gradient. Ecosphere 2: art29.CrossRefGoogle Scholar
  29. Luke J., H., J.T. Weir, C. D. Brock, R.E. Glor and W. Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131.CrossRefGoogle Scholar
  30. McCain, C.M. and K.B. Knight. 2013. Elevational Rapoport’s rule is not pervasive on mountains. Glob. Ecol. Biogeogr. 22: 750–759.CrossRefGoogle Scholar
  31. McCain, C.M. 2009. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecol. Lett. 12: 550–560.CrossRefGoogle Scholar
  32. Meiri, S. 2010. Bergmann’s rule – what’s in a name? Glob. Ecol. Biogeogr. 20: 203–207.CrossRefGoogle Scholar
  33. Merckx, T. and E.M. Slade. 2014. Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Ins. Cons. Divers. 7: 453–461.CrossRefGoogle Scholar
  34. Olalla-Tárraga, M.A. and M.A. Rodriguez. 2007. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16: 606–617.CrossRefGoogle Scholar
  35. Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zool. Scr. 26: 331–348.CrossRefGoogle Scholar
  36. Paradis, E., J. Claude and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Regier, J.C., C. Mitter, A. Zwick, A.L. Bazinet, M.P. Cummings, A.Y. Kawahara, J.-C. Sohn, D.J. Zwickl, S. Cho, D.R. Davis, J. Baixeras, J. Brown, C. Parr, S. Weller, D.C. Lees and K.T. Mitter. 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One 8: e58568.CrossRefGoogle Scholar
  38. Rodríguez, M.Á., M.Á. Olalla-Tárraga and B.A. Hawkins. 2008. Bergmann’s rule and the geography of mammal body size in the Western Hemisphere. Glob. Ecol. Biogeogr. 17: 274–283.CrossRefGoogle Scholar
  39. Ruggiero, A. and B.A. Hawkins. 2006. Mapping macroecology. Glob. Ecol. Biogeogr. 15: 433–437.CrossRefGoogle Scholar
  40. Sandel, B., L. Arge, B. Dalsgaard, R.G. Davies, K.J. Gaston, W.J. Sutherland and J.-C. Svenning. 2011. The influence of late quaternary climate-change velocity on species endemism. Science 334: 660–664.CrossRefGoogle Scholar
  41. Sanders, N.J. 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25: 25–32.CrossRefGoogle Scholar
  42. Stevens, G.C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133: 240– 256.CrossRefGoogle Scholar
  43. Stevens, G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am. Nat. 140: 893–911.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sullivan, J.B. and W.E. Miller. 2007. Intraspecific body size variation in Macrolepidoptera as related to altitude of capture site and seasonal generation. J. Lepidopt. Soc. 61: 72–77.Google Scholar
  45. Tomašových, A., D. Jablonski, S.K. Berke, A.Z. Krug and J.W. Valentine. 2015. Nonlinear thermal gradients shape broad-scale patterns in geographic range size and can reverse Rapoport’s rule. Glob. Ecol. Biogeogr. 24: 157–167.CrossRefGoogle Scholar
  46. Truxa, C. and K. Fiedler. 2012. Attraction to light – from how far do moths (Lepidoptera) return to weak artificial sources of light? Europ. J. Entomol. 109: 77–84.Google Scholar
  47. Watt, C., S. Mitchell and V. Salewski. 2010. Bergmann’s rule: a concept cluster? Oikos 119: 89–100.CrossRefGoogle Scholar
  48. Wiens, J.J., D.D. Ackerly, A.P. Allen, B.L. Anacker, L.B. Buckley, H.V. Cornell, E.I. Damschen, T.J. Davies, J.-A. Grytnes, S.P. Harrison, B.A. Hawkins, R.D. Holt, C.M. McCain and P.R. Stephens. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13: 1310–1324.CrossRefGoogle Scholar
  49. Woods, H.A. 2013. Ontogenetic changes in the body temperature of an insect herbivore. Funct. Ecol. 27: 1322–1331.CrossRefGoogle Scholar
  50. Zamora-Camacho, F.J., S. Reguera and G. Moreno-Rueda. 2014. Bergmann’s rule rules body size in an ectotherm: heat conservation in a lizard along a 2200-metre elevational gradient. J. Evol. Biol. 27: 2820–2828.CrossRefGoogle Scholar
  51. Zuo, W., M.E. Moses, G.B. West, C. Hou and J.H. Brown. 2012. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc. Roy. Soc. (B) 279: 1840– 1846.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • J. Beck
    • 1
    • 2
    Email author
  • H. C. Liedtke
    • 3
  • S. Widler
    • 2
  • F. Altermatt
    • 4
    • 5
  • S. P. Loader
    • 6
  • R. Hagmann
    • 2
  • S. Lang
    • 2
  • K. Fiedler
    • 7
  1. 1.University of Colorado, Museum of Natural HistoryBoulderUSA
  2. 2.Institute of BiogeographyUniversity of BaselBaselSwitzerland
  3. 3.Ecology, Evolution and Developmental Group, Department of Wetland EcologyEstación Biológica de Doñana (CSIC)SevillaSpain
  4. 4.Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic EcologyDübendorfSwitzerland
  5. 5.Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichürichSwitzerland
  6. 6.University of RoehamptonLondonUK
  7. 7.University of Vienna, Division of Tropical Ecology & Animal BiodiversityViennaAustria

Personalised recommendations