Community Ecology

, Volume 17, Issue 2, pp 216–224 | Cite as

Phylogenetic clustering found in lichen but not in plant communities in European heathlands

  • I. GeedickeEmail author
  • M. Schultz
  • B. Rudolph
  • J. Oldeland


Species richness is a widespread measure to evaluate the effect of different management histories on plant communities and their biodiversity. However, analysing the phylogenetic structure of plant communities could provide new insights into the effects of different management methods on community assemblages and provide further guidance for conservation decisions. Heathlands require permanent management to ensure the existence of such a cultural landscape. While traditional management with grazing is time consuming, mechanical methods are often applied but their consequences on the phylogenetic community assemblages are still unclear. We sampled 60 vegetation plots in dry sandy heathlands (EU habitat type 2310) in northern Germany stratified by five different heathland management histories: fire, plaggen (turf cutting), mowing, deforestation and intensive grazing. Due to the distant relationship of vascular plants and lichens, we assembled two phylogenetic trees, one for vascular plants and one for lichens. We then calculated phylogenetic diversity (PD) and measures of phylogenetic community structure for vascular plant and lichen communities. Deforested areas supported significantly higher PD values for vascular plant communities. We found that PD was strongly correlated with species richness (SR) but the calculation of rarefied PD was uncorrelated to SR leading to a different ranking of management histories. We observed phylogenetic clustering in the lichen communities but not for vascular plants. Thus, management by mowing and intensive grazing promotes habitat filtering of lichens, while management histories that cause greater disturbance such as fire and plaggen do not seem to affect phylogenetic community structure. The set of management strategies fulfilled the goals of the managers in maintaining a healthy heathland community structure. However, management strategies that cause less disturbance can offer an additional range of habitat for other taxonomic groups such as lichen communities.


Heathland Historical land use Lüneburger Heide Lichen MPD Phylogenetic community structure Phylogenetic diversity Rarefaction Species richness 



Phylogenetic Diversity


NGO Verein Naturschutzpark


rarefied PD


Species Richness


Mean Pairwise phylogenetic distance


Net relatedness index


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2016_1702216_MOESM1_ESM.pdf (100 kb)
Supplementary material, approximately 102 KB.


  1. Bailey, R.H. 1976. Ecological aspects of dispersal and establishment in lichens. In: Brown, D.H., Hawksworth, D.L. and Bailey , R.H. (eds), Lichenology: Progress and Problems. Academic Press, London. pp. 215–247.Google Scholar
  2. Barclay-Estrup, P. and Gimingham, C.H. 1969. The description and interpretation of cyclical processes in a heath community: I. vegetational change in relation to the calluna cycle. J. Ecol. 57: 737–758.Google Scholar
  3. Bossuyt, B., Honnay, O., Van Stichelen, K., Hermy, M. and Van Assche, J. 2001. The effect of a complex land use history on the restoration possibilities of heathland in central Belgium. Belg. J. Bot. 134: 29–40.Google Scholar
  4. Cadotte, M.W., Cardinale, B.J. and Oakley, T.H. 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. U.S.A. 105:17012–17017.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cadotte, M.W., Jonathan Davies, T., Regetz, J., Kembel, S.W., Cleland, E. and Oakley, T.H. 2010. Phylogenetic diversity metrics for ccological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13: 96–105.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cavender-Bares, J., Keen, A. and Miles, B. 2006. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87: 109–122.CrossRefGoogle Scholar
  7. Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. and Kembel, S.W. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12: 693–715.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cooper, N., Rodríguez, J. and Purvis, A. 2008. A common tendency for phylogenetic overdispersion in mammalian assemblages. Proc. R. Soc. Lond. B Biol. Sci. 275: 2031–2037.CrossRefGoogle Scholar
  9. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F., Guindon, S., Lefort, V., Lescot, M., et al. 2008. robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36: 465–469.Google Scholar
  10. Dinnage, R. 2009. Disturbance alters the phylogenetic composition and structure of plant communities in an old field system. PLoS ONE 4, e7071.Google Scholar
  11. Egorov, E., Prati, D., Durka, W., Michalski, S., Fischer, M., Schmitt, B., Blaser, S. and Brändle, M. 2014. Does land-use intensification decrease plant phylogenetic diversity in local grasslands? PLOS ONE 9, e103252.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Faith, D.P. 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61: 1–10.CrossRefGoogle Scholar
  13. Faith, D.P., Reid, C.A.M. and Hunter, J. 2004. Integrating phylogenetic diversity, complementarity, and endemism for conservation assessment. Conserv. Biol. 18: 255–261.CrossRefGoogle Scholar
  14. Fontaine, K.M., Ahti, T. and Piercey-Normore, M.D. 2010. Convergent evolution in Cladonia gracilis and allies. The Lichenologist 42: 323–338.CrossRefGoogle Scholar
  15. Gerhold, P., Cahill Jr, J.F., Winter, M., Bartish, I.V. and Prinzing, A. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29: 600–614.CrossRefGoogle Scholar
  16. Giraudoux, P. 2009. pgirmess: Data analysis in ecology. R package version 1.5.9.Google Scholar
  17. Grafen, A. 1989. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326: 119–157.CrossRefGoogle Scholar
  18. Hall, T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.Google Scholar
  19. Helms, G., Friedl, T. and Rambold, G. 2003. Phylogenetic relationships of the Physciaceae inferred from rDNA sequence data and selected phenotypic characters. Mycologia 95: 1078–1099.CrossRefGoogle Scholar
  20. Helmus, M.R., Bland, T.J., Williams, C.K. and Ives, A.R. 2007. Phylogenetic measures of biodiversity. Am. Nat. 169: E68–E83.CrossRefGoogle Scholar
  21. Hülsenbeck, J.P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.CrossRefGoogle Scholar
  22. Keienburg, T. and Prüter, J. 2006. Naturschutzgebiet Lüneburger Heide: Erhaltung und Entwicklung einer alten Kulturlandschaft. Mitteilungen Aus NNA 17, 65.Google Scholar
  23. Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P. and Webb, C.O. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.CrossRefGoogle Scholar
  24. Kuzmina, M. and Ivanova, N. 2011. Amplification for Plants and Fungi. Canadian Centre for DNA barcoding, Guelph, Canada.Google Scholar
  25. Lake, S., Bullock, J.M. and Hartley, S. 2001. Impacts of livestock grazing on lowland heathland in the UK. Engl. Nat. Res. Rep. 422: 143.Google Scholar
  26. Letten, A.D., Keith, D.A. and Tozer, M.G. 2014. Phylogenetic and functional dissimilarity does not increase during temporal heathland succession. Proc. R. Soc. Lond. B Biol. Sci. 281: 20142102.CrossRefGoogle Scholar
  27. Londo, G. 1976. The decimal scale for releves of permanent quadrats. Vegetatio 33: 61–64.CrossRefGoogle Scholar
  28. Lütkepohl, M. and Kaiser, T. 1997. Die Heidelandschaft. In: Naturschutzgebiet Lüneburger Heide: Geschichte, Ökologie, Naturschutz. Verlag H. M. Hausschild GmbH, Bremen. pp. 87–100.Google Scholar
  29. Mallik, A.U. and Gimingham, C.H. 1985. Ecological effects of heather burning: II. Effects on seed germination and vegetative regeneration. J. Ecol. 73: 633–644.Google Scholar
  30. Mayfield, M.M. and Levine, J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities: Phylogeny and coexistence. Ecol. Lett. 13: 1085–1093.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mertz, P. 2002. Pflanzenwelt Mitteleuropas und der Alpen. Nikol Verlagsgesellschaft mbH & co.KG, Hamburg.Google Scholar
  32. Moore, N.W. 1962. The heaths of dorset and their conservation. J. Ecol. 50: 369–391.CrossRefGoogle Scholar
  33. Nipperess, D.A. and Matsen, F.A. 2013. The mean and variance of phylogenetic diversity under rarefaction. Methods Ecol. Evol. 4: 566–572.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Paradis, E., Claude, J. and Strimmer, K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pienkowski, M.W., Watkinson, A.R., Kerby, G., Clarke, K.R. and Warwick, R.M. 1998. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35: 523–531.CrossRefGoogle Scholar
  36. Piessens, K., Honnay, O. and Hermy, M. 2005. The role of fragment area and isolation in the conservation of heathland species. Biol. Conserv. 122: 61–69.CrossRefGoogle Scholar
  37. Pino-Bodas, R., Martín, M.P., Burgaz, A.R. and Lumbsch, H.T. 2013. Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Mol. Ecol. Resour. 13: 1058–1068.PubMedGoogle Scholar
  38. Poczai, P. and Hyvönen, J. 2010. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol. Biol. Rep. 37: 1897–1912.CrossRefGoogle Scholar
  39. Prieto, M. and Wedin, M. 2013. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8, e65576.Google Scholar
  40. R Core Team 2014. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  41. Rodrigues, A.S.L., Brooks, T.M. and Gaston, K.J. 2005. Integrating phylogenetic diversity in the selection of priority areas for conservation: Does it make a difference? In: Purvis, A., Gittleman, J.L. and T. Brooks. (eds.), Phylogeny and Conservation. Cambridge University Press, New York. pp. 101–119.CrossRefGoogle Scholar
  42. Rohwer, J.G., Li, J., Rudolph, B., Schmidt, S.A., Werff, H. van der and Li, H. 2009. Is Persea (Lauraceae) monophyletic? Evidence from nuclear ribosomal ITS sequences. Taxon 58: 1153–1167.CrossRefGoogle Scholar
  43. Rohwer, J.G., Moraes, P.L.R.D., Rudolph, B. and Werff, H.V.D. 2014. A phylogenetic analysis of the Cryptocarya group (Lauraceae) and relationships of Dahlgrenodendron, Sinopora, Triadodaphne, and Yasunia. Phytotaxa 158: 111–132.CrossRefGoogle Scholar
  44. Ronquist, F. and Hülsenbeck, J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schmull, M., Miadlikowska, J., Pelzer, M., Stocker-Wörgötter, E., Hofstetter, V., Fraker, E., Hodkinson, B.P., Reeb, V., Kukwa, M., Lumbsch, H.T., et al. 2011. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103: 983–1003.Google Scholar
  46. Stenroos, S. 2002. Phylogeny of the genus Cladonia (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18: 237–278.Google Scholar
  47. Stevens, P.F. 2001. Angiosperm phylogeny website. Version 13, October 2014.Google Scholar
  48. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vamosi, S.M., Heard, S.B., Vamosi, J.C. and Webb, C.O. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18: 572–592.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Verdú, M. and Pausas, J.G. 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J. Ecol. 95: 1316–1323.CrossRefGoogle Scholar
  51. Webb, C.O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156: 145–155.CrossRefGoogle Scholar
  52. Webb, N.R. 1998. The traditional management of European heathlands. J. Appl. Ecol. 35: 987–990.CrossRefGoogle Scholar
  53. Webb, N.R. and Vermaat, A.H. 1990. Changes in vegetational diversity on remnant heathland fragments. Biol. Conserv. 53: 253–264.CrossRefGoogle Scholar
  54. Webb, C.O., Ackerly, D.D., McPeek, M.A. and Donoghue, M.J. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33: 475–505.CrossRefGoogle Scholar
  55. Webb, C.O., Ackerly, D.D. and Kembel, S.W. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24: 2098–2100.CrossRefGoogle Scholar
  56. Winter, M., Devictor, V. and Schweiger, O. 2013. Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol. 28: 199–204.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • I. Geedicke
    • 1
    Email author
  • M. Schultz
    • 1
  • B. Rudolph
    • 1
  • J. Oldeland
    • 1
  1. 1.Biodiversity, Evolution and Ecology of Plants, Biocentre Klein Flottbek and Botanical GardenUniversity of HamburgHamburgGermany

Personalised recommendations