Community Ecology

, Volume 17, Issue 1, pp 61–70 | Cite as

Patterns of plant species richness and composition in deciduous oak forests in relation to environmental drivers

  • M. SlezákEmail author
  • I. Axmanová


Local plant species richness and composition may vary across habitats and between plant taxonomic groups within temperate deciduous forests. Multi-taxon approach is therefore needed to provide a more detailed insight into determinants affecting vegetation structure. Fifty-four deciduous oak-dominated vegetation plots (20 m × 20 m) were sampled across central Slovakia (Štiavnické vrchy Mts) in order to study the effect of environmental (soil, light, topographic) factors on species richness and composition patterns of two main assemblages of understorey layer (herb-layer vascular plants and ground-dwelling bryophytes). The number of recorded herb-layer vascular plants and ground-dwelling bryophytes was 12–48 (mean 28) and 0–11 (mean 4) species per plot, respectively. Generalized linear model revealed that species richness of herb-layer vascular plants was driven by canopy openness, altitude, soil pH/base saturation gradient and plant-available phosphorus. Canopy openness and heat load index accompanied by soil pH/base saturation gradient determined changes of the ground-dwelling bryophyte richness. Canonical Correspondence Analysis identified soil pH/base saturation gradient, canopy openness, soil silt and topography related predictors (altitude, slope, radiation) as the main drivers of the herb-layer vascular plant compositional variability. Species composition variation of ground-dwelling bryophytes was controlled by radiation and canopy openness.


Alpha diversity Bryophytes Deciduous oak forests Light conditions Soil chemistry Topography Vascular plants 



Canonical Correspondence Analysis


Generalized Linear Model


Principal Component Analysis


Marhold and Hindák (1998) for vascular plants and bryophytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2016_1701061_MOESM1_ESM.pdf (300 kb)
Supplementary material, approximately 307 KB.


  1. Ádám, R., P. Odor and J. Boloni. 2013. The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests. Community Ecol. 14: 101–109.CrossRefGoogle Scholar
  2. Andersson, M. 1988. Toxicity and tolerance of aluminium in vascular plants. A review. Water Air Soil Pollut. 39: 439–462.Google Scholar
  3. Attiwill, P.M. and M. Adams. 1993. Nutrient cycling in forests. New Phytol. 124: 561–582.CrossRefGoogle Scholar
  4. Augusto, L., J.-L. Dupouey and J. Ranger. 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann. For. Sci. 60: 823–831.CrossRefGoogle Scholar
  5. Augusto, L., J. Ranger, D. Binkley and A. Rothe. 2002. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 59: 233–253.CrossRefGoogle Scholar
  6. Axmanová, I., M. Chytrý, D. Zelený, C.F. Li, M. Vymazalová, J. Danihelka, M. Horsák, M. Kočí, S. Kubešová, Z. Lososová, Z. Otýpková, L. Tichý, V.B. Martynenko, E.Z. Baisheva, B. Schuster and M. Diekmann. 2012. The species richness-productivity relationship in the herb layer of European deciduous forests. Global Ecol. Biogeogr. 21: 657–667.CrossRefGoogle Scholar
  7. Bacaro, G., D. Rocchni, I. Bonini, M. Marignani, S. Maccherini and A. Chiarucci. 2008. The role of regional and local scale predictors for plant species richness in Mediterranean forests. Plant Biosyst. 142: 630–642.CrossRefGoogle Scholar
  8. Barbier, S., F. Gosselin and P. Balandier. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved – A critical review for temperate and boreal forests. For. Ecol. Manag. 254: 1–15.CrossRefGoogle Scholar
  9. Bates, J.W. 1992. Mineral nutrient acquisition and retention by bryophytes. J. Bryol. 17: 223–240.CrossRefGoogle Scholar
  10. Bates, J.W. 2009. Mineral nutrition and substratum ecology. In: Goffinet, B. and A.J. Shaw (eds.), Bryophyte Biology. Cambridge Univ. Press, Cambridge. pp. 299–356.Google Scholar
  11. Brown, D.H. and J.W. Bates. 1990. Bryophytes and nutrient cycling. Bot. J. Linn. Soc. 104: 129–147.CrossRefGoogle Scholar
  12. Büscher, P., N. Koedam and D. van Speybroeck 1990. Cation-exchange properties and adaptation to soil acidity in bryophytes. New Phytol. 115: 177–186.CrossRefGoogle Scholar
  13. Chytrý, M., L. Tichý and J. Roleček. 2003. Local and regional patterns of species richness in central European vegetation types along the pH/calcium gradient. Folia Geobot. 38: 429–442.CrossRefGoogle Scholar
  14. Cornelissen, J.H.C, S.I. Lang, N.A. Soudzilovskaia and H.J. During. 2007. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 99: 987–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dumortier, M., J. Butaye, H. Jacquemyn, N. van Camp, N. Lust and M. Hermy. 2002. Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium. For. Ecol. Manag. 158: 85–102.CrossRefGoogle Scholar
  16. Dupré, C, C. Wessberg and M. Diekmann. 2002. Species richness in deciduous forests: effects of species pools and environmental variables. J. Veg. Sci. 13: 505–516.CrossRefGoogle Scholar
  17. Ellenberg, H. 2009. Vegetation Ecology of Central Europe. Cambridge Univ. Press, Cambridge.Google Scholar
  18. Ewald, J. 2008. Plant species richness in mountain forests of the Bavarian Alps. Plant Biosyst. 142: 594–603.CrossRefGoogle Scholar
  19. Frazer, G.W., CD. Canham and K.P Lertzman. 1999. Gap Light Analyzer (GLA), Version 2.0. Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, user’s manual and program documentation. Simon Fraser Univ., Burnaby, British Columbia.Google Scholar
  20. Gilliam, FS. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57: 845–858.Google Scholar
  21. Härdtle, W., G. von Oheimb and C. Westphal. 2003. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). For. Ecol. Manag. 182: 327–338.CrossRefGoogle Scholar
  22. Hofmeister, J., J. Hošek, M. Modrý and J. Roleček. 2009. The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecol. 205: 57–75.CrossRefGoogle Scholar
  23. Hokkanen, P. 2006. Environmental patterns and gradients in the vascular plants and bryophytes of eastern Fennoscandian herb-rich forests. For. Ecol. Manag. 229: 73–87.CrossRefGoogle Scholar
  24. Hrivnák, R., D. Gömöry, M. Slezák, K. Ujházy, R. Hédl, B. Jarčuška and M. Ujházyová. 2014. Species richness pattern along altitudinal gradient in Central European beech forests. Folia Geobot. 49: 425–441.CrossRefGoogle Scholar
  25. Hrivnák, R., M. Slezák, B. Jarčuška, I. Jarolímek and J. Kochjarová. 2015. Native and alien plant species richness response to soil nitrogen and phosphorus in temperate floodplain and swamp forests. Forests 6: 3501–3513.CrossRefGoogle Scholar
  26. Ingerpuu, N, K. Vellak, J. Liira and M. Pärtel. 2003. Relationships between species richness patterns in deciduous forests at the north Estonian limestone escarpment. J. Veg. Sci. 14: 773–780.CrossRefGoogle Scholar
  27. Johnson, J.B. and K.S. Omland. 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19: 101–108.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kellner, O. 1993. Effects on associated flora of sylvicultural nitrogen fertilization repeated at long intervals. J. Appl. Ecol. 30: 563–574.CrossRefGoogle Scholar
  29. Kubešová, S. and M. Chytrý. 2005. Diversity of bryophytes on tree-less cliffs and talus slopes in a forested central European landscape. J. Bryol. 27: 35–46.CrossRefGoogle Scholar
  30. Longuetaud, F., T. Seifert, J.-M. Leban and H. Pretzsch. 2008. Analysis of long-term dynamics of crown of sessile oaks at the stand level by means of spatial statistics. For. Ecol. Manag. 225: 2007–2019.CrossRefGoogle Scholar
  31. Lundholm, J.T. 2009. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J. Veg. Sci. 20: 377–391.CrossRefGoogle Scholar
  32. Marhold, K. and F. Hindák (eds.) 1998. Checklist of Non-vascular and Vascular Plants of Slovakia. Veda, Bratislava.Google Scholar
  33. Márialigeti, S., B. Németh, F. Tinya and P. Odor. 2009. The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests. Biodiv Conserv. 18: 2223–2241.CrossRefGoogle Scholar
  34. Marschner, H. 1991. Mechanisms of adaptation of plants to acid soils. Plant Soil 134: 1–20.CrossRefGoogle Scholar
  35. McCune, B. and D. Keon. 2002. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13: 603–606.CrossRefGoogle Scholar
  36. Merunková, K. and M. Chytrý. 2012. Environmental controls of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol. 213: 591–602.CrossRefGoogle Scholar
  37. Pärtel, M. 2002. Local plant diversity patterns and evolutionary history at regional scale. Ecology 83: 2361–2366.CrossRefGoogle Scholar
  38. Pausas, J.G. 1994. Species richness patterns in the understorey of Pyrenean Pinus sylvestris forest. J. Veg. Sci. 5: 517–524.CrossRefGoogle Scholar
  39. Pausas, J.G. and M.P Austin. 2001. Patterns of plant species richness in relation to different environments: an appraisal. J. Veg. Sci. 12: 153–166.CrossRefGoogle Scholar
  40. Proctor, M.C.F. 1981. Physiological ecology of bryophytes. Adv. Bryol. 1: 79–166.Google Scholar
  41. Proctor, M.C.F. and Z. Tuba. 2002. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol. 156: 327–349.CrossRefGoogle Scholar
  42. Raabe, S., J. Müller, M. Manthey, O. Dürhammer, U. Teuber, A. Gottlein, B. Forster, R. Brandl and C. Bässler. 2010. Drivers of bryophyte diversity allow implications for forest management with a focus on climate change. For. Ecol. Manag. 260: 1956–1964.CrossRefGoogle Scholar
  43. Rahbek, C. 2005. The role of spatial scale and the perception of largescale species-richness patterns. Ecol. Lett. 8: 224–239.CrossRefGoogle Scholar
  44. Reczyńska, K. 2015. Diversity and ecology of oak forests in SW Poland (Sudetes Mts.). Phytocoenologia 45: 85–106.CrossRefGoogle Scholar
  45. Rincon, E. 1988. The effect of herbaceous litter on bryophyte growth. J. Bryol. 15: 209–217.CrossRefGoogle Scholar
  46. Sabatini, F.M., B. Jiménez-Alfaro, S. Burrascano and C. Blasi. 2014. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol. 15: 147–157.CrossRefGoogle Scholar
  47. Schuster, B. and M. Diekmann. 2003. Changes in species density along the soil pH gradient – evidence from German plant communities. Folia Geobot. 38: 367–379.CrossRefGoogle Scholar
  48. Schuster, B. and M. Diekmann. 2005. Species richness and environmental correlates in deciduous forests of Northwest Germany. For. Ecol. Manag. 206: 197–205.CrossRefGoogle Scholar
  49. Shmida, A. and M.V. Wilson. 1985. Biological determinants of species diversity. J. Biogeogr. 12: 1–20.CrossRefGoogle Scholar
  50. Szymura, T.H. and M. Szymura. 2011. Soil properties and light availability determine species richness and vegetation diversity in an overgrown coppice oak stand. Pol. J. Ecol. 59: 523–533.Google Scholar
  51. Tilman, D. 2000. Causes, consequences and ethics of biodiversity. Nature 405: 208–211.CrossRefGoogle Scholar
  52. Tinya, F., S. Márialigeti, I. Király, B. Németh and P. Odor. 2009. The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Ӧrség, Western Hungary. Plant Ecol. 204: 69–81.CrossRefGoogle Scholar
  53. Tyler, G. 2003. Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour – contribution to a debate. Folia Geobot. 38: 419–428.CrossRefGoogle Scholar
  54. van der Hoeven, E. and H.J. During. 1997. Positive and negative interactions in bryophyte populations. In: de Kroon, H. and J. van Groenendael (eds.), The Ecology and Evolution of Clonal Plants. Leiden, Backhuys, pp. 291–310.Google Scholar
  55. van der Wal, R., I.S.K. Pearc and R.W. Brooker. 2005. Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142: 159–168.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vockenhuber, E.A., C. Scherber, C. Langenbruch, M. Meiβner, D. Seidel and T. Tscharntke. 2011. Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect. Plant Ecol. Evol. Syst. 13: 111–119.CrossRefGoogle Scholar
  57. Whigham, D.F. 2004. Ecology of woodland herbs in temperate deciduous forests. Ann. Rev. Ecol. Ev l. 35: 583–621.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Biology and Ecology, Faculty of EducationCatholic UniversityRužomberokSlovak Republic
  2. 2.Institute of BotanySlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations