Patterns of plant species richness and composition in deciduous oak forests in relation to environmental drivers

Abstract

Local plant species richness and composition may vary across habitats and between plant taxonomic groups within temperate deciduous forests. Multi-taxon approach is therefore needed to provide a more detailed insight into determinants affecting vegetation structure. Fifty-four deciduous oak-dominated vegetation plots (20 m × 20 m) were sampled across central Slovakia (Štiavnické vrchy Mts) in order to study the effect of environmental (soil, light, topographic) factors on species richness and composition patterns of two main assemblages of understorey layer (herb-layer vascular plants and ground-dwelling bryophytes). The number of recorded herb-layer vascular plants and ground-dwelling bryophytes was 12–48 (mean 28) and 0–11 (mean 4) species per plot, respectively. Generalized linear model revealed that species richness of herb-layer vascular plants was driven by canopy openness, altitude, soil pH/base saturation gradient and plant-available phosphorus. Canopy openness and heat load index accompanied by soil pH/base saturation gradient determined changes of the ground-dwelling bryophyte richness. Canonical Correspondence Analysis identified soil pH/base saturation gradient, canopy openness, soil silt and topography related predictors (altitude, slope, radiation) as the main drivers of the herb-layer vascular plant compositional variability. Species composition variation of ground-dwelling bryophytes was controlled by radiation and canopy openness.

Abbreviations

CCA:

Canonical Correspondence Analysis

GLM:

Generalized Linear Model

PCA:

Principal Component Analysis

References

  1. Ádám, R., P. Odor and J. Boloni. 2013. The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests. Community Ecol. 14: 101–109.

    Article  Google Scholar 

  2. Andersson, M. 1988. Toxicity and tolerance of aluminium in vascular plants. A review. Water Air Soil Pollut. 39: 439–462.

    CAS  Google Scholar 

  3. Attiwill, P.M. and M. Adams. 1993. Nutrient cycling in forests. New Phytol. 124: 561–582.

    Article  CAS  Google Scholar 

  4. Augusto, L., J.-L. Dupouey and J. Ranger. 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann. For. Sci. 60: 823–831.

    Article  Google Scholar 

  5. Augusto, L., J. Ranger, D. Binkley and A. Rothe. 2002. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 59: 233–253.

    Article  Google Scholar 

  6. Axmanová, I., M. Chytrý, D. Zelený, C.F. Li, M. Vymazalová, J. Danihelka, M. Horsák, M. Kočí, S. Kubešová, Z. Lososová, Z. Otýpková, L. Tichý, V.B. Martynenko, E.Z. Baisheva, B. Schuster and M. Diekmann. 2012. The species richness-productivity relationship in the herb layer of European deciduous forests. Global Ecol. Biogeogr. 21: 657–667.

    Article  Google Scholar 

  7. Bacaro, G., D. Rocchni, I. Bonini, M. Marignani, S. Maccherini and A. Chiarucci. 2008. The role of regional and local scale predictors for plant species richness in Mediterranean forests. Plant Biosyst. 142: 630–642.

    Article  Google Scholar 

  8. Barbier, S., F. Gosselin and P. Balandier. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved – A critical review for temperate and boreal forests. For. Ecol. Manag. 254: 1–15.

    Article  Google Scholar 

  9. Bates, J.W. 1992. Mineral nutrient acquisition and retention by bryophytes. J. Bryol. 17: 223–240.

    Article  Google Scholar 

  10. Bates, J.W. 2009. Mineral nutrition and substratum ecology. In: Goffinet, B. and A.J. Shaw (eds.), Bryophyte Biology. Cambridge Univ. Press, Cambridge. pp. 299–356.

    Google Scholar 

  11. Brown, D.H. and J.W. Bates. 1990. Bryophytes and nutrient cycling. Bot. J. Linn. Soc. 104: 129–147.

    Article  Google Scholar 

  12. Büscher, P., N. Koedam and D. van Speybroeck 1990. Cation-exchange properties and adaptation to soil acidity in bryophytes. New Phytol. 115: 177–186.

    Article  Google Scholar 

  13. Chytrý, M., L. Tichý and J. Roleček. 2003. Local and regional patterns of species richness in central European vegetation types along the pH/calcium gradient. Folia Geobot. 38: 429–442.

    Article  Google Scholar 

  14. Cornelissen, J.H.C, S.I. Lang, N.A. Soudzilovskaia and H.J. During. 2007. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 99: 987–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dumortier, M., J. Butaye, H. Jacquemyn, N. van Camp, N. Lust and M. Hermy. 2002. Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium. For. Ecol. Manag. 158: 85–102.

    Article  Google Scholar 

  16. Dupré, C, C. Wessberg and M. Diekmann. 2002. Species richness in deciduous forests: effects of species pools and environmental variables. J. Veg. Sci. 13: 505–516.

    Article  Google Scholar 

  17. Ellenberg, H. 2009. Vegetation Ecology of Central Europe. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  18. Ewald, J. 2008. Plant species richness in mountain forests of the Bavarian Alps. Plant Biosyst. 142: 594–603.

    Article  Google Scholar 

  19. Frazer, G.W., CD. Canham and K.P Lertzman. 1999. Gap Light Analyzer (GLA), Version 2.0. Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, user’s manual and program documentation. Simon Fraser Univ., Burnaby, British Columbia.

  20. Gilliam, FS. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57: 845–858.

    Google Scholar 

  21. Härdtle, W., G. von Oheimb and C. Westphal. 2003. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). For. Ecol. Manag. 182: 327–338.

    Article  Google Scholar 

  22. Hofmeister, J., J. Hošek, M. Modrý and J. Roleček. 2009. The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecol. 205: 57–75.

    Article  Google Scholar 

  23. Hokkanen, P. 2006. Environmental patterns and gradients in the vascular plants and bryophytes of eastern Fennoscandian herb-rich forests. For. Ecol. Manag. 229: 73–87.

    Article  Google Scholar 

  24. Hrivnák, R., D. Gömöry, M. Slezák, K. Ujházy, R. Hédl, B. Jarčuška and M. Ujházyová. 2014. Species richness pattern along altitudinal gradient in Central European beech forests. Folia Geobot. 49: 425–441.

    Article  Google Scholar 

  25. Hrivnák, R., M. Slezák, B. Jarčuška, I. Jarolímek and J. Kochjarová. 2015. Native and alien plant species richness response to soil nitrogen and phosphorus in temperate floodplain and swamp forests. Forests 6: 3501–3513.

    Article  Google Scholar 

  26. Ingerpuu, N, K. Vellak, J. Liira and M. Pärtel. 2003. Relationships between species richness patterns in deciduous forests at the north Estonian limestone escarpment. J. Veg. Sci. 14: 773–780.

    Article  Google Scholar 

  27. Johnson, J.B. and K.S. Omland. 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19: 101–108.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kellner, O. 1993. Effects on associated flora of sylvicultural nitrogen fertilization repeated at long intervals. J. Appl. Ecol. 30: 563–574.

    Article  Google Scholar 

  29. Kubešová, S. and M. Chytrý. 2005. Diversity of bryophytes on tree-less cliffs and talus slopes in a forested central European landscape. J. Bryol. 27: 35–46.

    Article  Google Scholar 

  30. Longuetaud, F., T. Seifert, J.-M. Leban and H. Pretzsch. 2008. Analysis of long-term dynamics of crown of sessile oaks at the stand level by means of spatial statistics. For. Ecol. Manag. 225: 2007–2019.

    Article  Google Scholar 

  31. Lundholm, J.T. 2009. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J. Veg. Sci. 20: 377–391.

    Article  Google Scholar 

  32. Marhold, K. and F. Hindák (eds.) 1998. Checklist of Non-vascular and Vascular Plants of Slovakia. Veda, Bratislava.

  33. Márialigeti, S., B. Németh, F. Tinya and P. Odor. 2009. The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests. Biodiv Conserv. 18: 2223–2241.

    Article  Google Scholar 

  34. Marschner, H. 1991. Mechanisms of adaptation of plants to acid soils. Plant Soil 134: 1–20.

    Article  CAS  Google Scholar 

  35. McCune, B. and D. Keon. 2002. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13: 603–606.

    Article  Google Scholar 

  36. Merunková, K. and M. Chytrý. 2012. Environmental controls of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol. 213: 591–602.

    Article  Google Scholar 

  37. Pärtel, M. 2002. Local plant diversity patterns and evolutionary history at regional scale. Ecology 83: 2361–2366.

    Article  Google Scholar 

  38. Pausas, J.G. 1994. Species richness patterns in the understorey of Pyrenean Pinus sylvestris forest. J. Veg. Sci. 5: 517–524.

    Article  Google Scholar 

  39. Pausas, J.G. and M.P Austin. 2001. Patterns of plant species richness in relation to different environments: an appraisal. J. Veg. Sci. 12: 153–166.

    Article  Google Scholar 

  40. Proctor, M.C.F. 1981. Physiological ecology of bryophytes. Adv. Bryol. 1: 79–166.

    CAS  Google Scholar 

  41. Proctor, M.C.F. and Z. Tuba. 2002. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol. 156: 327–349.

    Article  Google Scholar 

  42. Raabe, S., J. Müller, M. Manthey, O. Dürhammer, U. Teuber, A. Gottlein, B. Forster, R. Brandl and C. Bässler. 2010. Drivers of bryophyte diversity allow implications for forest management with a focus on climate change. For. Ecol. Manag. 260: 1956–1964.

    Article  Google Scholar 

  43. Rahbek, C. 2005. The role of spatial scale and the perception of largescale species-richness patterns. Ecol. Lett. 8: 224–239.

    Article  Google Scholar 

  44. Reczyńska, K. 2015. Diversity and ecology of oak forests in SW Poland (Sudetes Mts.). Phytocoenologia 45: 85–106.

    Article  Google Scholar 

  45. Rincon, E. 1988. The effect of herbaceous litter on bryophyte growth. J. Bryol. 15: 209–217.

    Article  Google Scholar 

  46. Sabatini, F.M., B. Jiménez-Alfaro, S. Burrascano and C. Blasi. 2014. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol. 15: 147–157.

    Article  Google Scholar 

  47. Schuster, B. and M. Diekmann. 2003. Changes in species density along the soil pH gradient – evidence from German plant communities. Folia Geobot. 38: 367–379.

    Article  Google Scholar 

  48. Schuster, B. and M. Diekmann. 2005. Species richness and environmental correlates in deciduous forests of Northwest Germany. For. Ecol. Manag. 206: 197–205.

    Article  Google Scholar 

  49. Shmida, A. and M.V. Wilson. 1985. Biological determinants of species diversity. J. Biogeogr. 12: 1–20.

    Article  Google Scholar 

  50. Szymura, T.H. and M. Szymura. 2011. Soil properties and light availability determine species richness and vegetation diversity in an overgrown coppice oak stand. Pol. J. Ecol. 59: 523–533.

    Google Scholar 

  51. Tilman, D. 2000. Causes, consequences and ethics of biodiversity. Nature 405: 208–211.

    Article  CAS  Google Scholar 

  52. Tinya, F., S. Márialigeti, I. Király, B. Németh and P. Odor. 2009. The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Ӧrség, Western Hungary. Plant Ecol. 204: 69–81.

    Article  Google Scholar 

  53. Tyler, G. 2003. Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour – contribution to a debate. Folia Geobot. 38: 419–428.

    Article  Google Scholar 

  54. van der Hoeven, E. and H.J. During. 1997. Positive and negative interactions in bryophyte populations. In: de Kroon, H. and J. van Groenendael (eds.), The Ecology and Evolution of Clonal Plants. Leiden, Backhuys, pp. 291–310.

  55. van der Wal, R., I.S.K. Pearc and R.W. Brooker. 2005. Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142: 159–168.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vockenhuber, E.A., C. Scherber, C. Langenbruch, M. Meiβner, D. Seidel and T. Tscharntke. 2011. Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect. Plant Ecol. Evol. Syst. 13: 111–119.

    Article  Google Scholar 

  57. Whigham, D.F. 2004. Ecology of woodland herbs in temperate deciduous forests. Ann. Rev. Ecol. Ev l. 35: 583–621.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Slezák.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Slezák, M., Axmanová, I. Patterns of plant species richness and composition in deciduous oak forests in relation to environmental drivers. COMMUNITY ECOLOGY 17, 61–70 (2016). https://doi.org/10.1556/168.2016.17.1.8

Download citation

Keywords

  • Alpha diversity
  • Bryophytes
  • Deciduous oak forests
  • Light conditions
  • Soil chemistry
  • Topography
  • Vascular plants

Nomenclature

  • Marhold and Hindák (1998) for vascular plants and bryophytes