Advertisement

Community Ecology

, Volume 17, Issue 1, pp 88–97 | Cite as

Functional turnover and community assemblage during tropical forest succession

  • V. Marcilio-Silva
  • V. D. Pillar
  • M. C. M. MarquesEmail author
Open Access
Article

Abstract

Changes in species composition during the succession of ecological communities potentially reflect the differential effects of environmental filters and limiting similarity on structuring communities. As ecological succession can represent community assembly in action, understanding how successional time affects the functional and phylogenetic structure of communities can reveal the influence of different factors on the assembly process. We analysed functional patterns of multiple traits related to the succession of tropical forests to answer if there are trait convergence and/or divergence with regeneration age, and if functional and phylogenetic diversity can be predicted by forest age. We compiled checklists from studies of 23 successional forests in Brazilian Atlantic Forest, ranging from 4 to 120 years old. We also compiled functional traits for a total of 355 species. We analysed the data by a method that includes scaling-up trait-based data to the community level and matrix correlations of multiple traits. We built linear models to show the relationship between each trait and diversity (taxonomic, functional and phylogenetic) with successional time. We found no phylogenetic signal at the species pool and metacommunity levels, but significant trait divergence (tree guild, leaf slenderness, leaf area, pollination entomophilous generalist and pollination by vertebrate) and trait convergence (arboreal habitus, tree guild, leaf compoundness, pollination entomophilous generalist) patterns related to the successional gradient. Also, functional diversity increased during succession, with a significant increase in leaf slenderness and zoochoric dispersal and decrease in tree guild. Phylogenetic diversity also increased along the successional gradient. We found that the communities in the studied successional gradient are structured by both environmental (measured by trait convergence) and biotic (measured by trait divergence) filtering. The species turnover and diversification at taxonomic level are followed by well-defined patterns of trait turnover, revealing that community assembly is constrained by environmental filters at the beginning and by limiting similarity at the advanced stages of the succession.

Keywords

Community assembly Environmental filtering Functional traits Trait convergence Trait divergence Tropical forest 

Abbreviations

CM

Community Mean

TCAP

Trait Convergence Assembly Pattern

TDAP

Trait Divergence Assembly Pattern

Nomenclature

A.P.G. III (2009) 

Supplementary material

42974_2016_1701088_MOESM1_ESM.pdf (301 kb)
Supplementary material, approximately 308 KB.

References

  1. A.P.G. III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of fowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121.Google Scholar
  2. Bazzaz, F.A., and S.T.A. Pickett. 1980. Physiological ecology of tropical succession: a comparative review. Annu. Rev. Ecol. Syst. 11: 287–310.CrossRefGoogle Scholar
  3. Bell, C. D., D. E. Soltis and P.S. Soltis. 2010. The age and diversification of the angiosperms re-revisited. Am. J. Bot. 97: 1296–1303.CrossRefGoogle Scholar
  4. Bhaskar, R., T. E. Dawson and P. Balvanera. 2014. Community assembly and functional diversity along sucession post-management. Funct. Ecol. 28: 1256–1265.CrossRefGoogle Scholar
  5. Blomberg, S.P. and T. Garland. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15: 899–910.CrossRefGoogle Scholar
  6. Botta-Dukát, Z. 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16: 533–540.CrossRefGoogle Scholar
  7. Campetella, G., Z. Botta-Dukát, C. Wellstein, R. Canullo, S. Gatto, S. Chelli, L. Mucina and S. Bartha. 2011. Patterns of plant trait-environment relationships along a forest succession chronose-quence. Agr. Ecosyst. Environ. 145: 38–48.CrossRefGoogle Scholar
  8. Carvalho, G.H., M.V. Cianciaruso and M.A. Batalha. 2010. Plantminer: A web tool for checking and gathering plant species taxonomic information. Environ. Modell. Softw. 25: 815–816.CrossRefGoogle Scholar
  9. Cavender-Bares, J., K.H. Kozak, P.V.A. Fine and S.W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chazdon: R.L. 2008. Chance and determinism in tropical forest succession. In: W.P. Carson and S.A. Schnitzer. (eds.), Tropical Forest Community Ecology. Wiley-Backwell, Oxford. pp. 384–408.Google Scholar
  11. Clements, F.E. 1916. Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institution of Washington, Washington.Google Scholar
  12. Cornelissen, J.H.C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D.E. Gurvich, P.B. Reich, H. ter Steege, H.D. Morgan, M.G.A van der Heijden, J.G. Pausas and H. Poorter. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51: 335–380.Google Scholar
  13. Devictor, V., D. Mouillot, C. Meynard, F. Jiguet, W. Thuiller and N. Mouquet. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13: 1030–1040.PubMedPubMedCentralGoogle Scholar
  14. Díaz, S., M. Cabido and F. Casanoves. 1998. Plant functional traits and environmental filters at the regional scale. J. Veg. Sci. 9: 113–122.CrossRefGoogle Scholar
  15. Ding, Y., R. Zang, S.G. Letcher, S. Liu, and F. He. 2012. Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 121: 1263–1270.CrossRefGoogle Scholar
  16. Duarte, L.D.S., R.S. Bergamin, V. Marcilio-Silva, G.D.D.S. Seger and M.C.M. Marques. 2014. Phylobetadiversity among forest types in the Brazlian Atlantic forest complex. PLoS One 9: e105043.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fukami, T., T.M. Bezemer, S.R. Mortimer, and W.H. Van der Putten. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8: 1283–1290.CrossRefGoogle Scholar
  18. Garnier, E., J. Cortez, G. Billes, M.L. Navas, C. Roumet, M. Debussche, G. Laurent, A. Blanchard, D. Aubry, A. Bellmann, C. Neill and J.P. Toussaint. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630–2637.CrossRefGoogle Scholar
  19. Gerhold, P., J.F. Cahill Jr., M. Winter, I.V. Bartish and A. Prinzing. 2015. Phylogenetic patterns are not proxy of community assembly mechanisms (they are far better). Funct. Ecol. 29: 600–614.CrossRefGoogle Scholar
  20. Girão, L.C., A.V. Lopes, M. Tabarelli and E.M. Bruna. 2007. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape. PLoS ONE 2, e908.Google Scholar
  21. Götzenberger L., F. de Bello, K.A. Bråthen, et al. 2011. Ecological assembly rules in plant communities–approaches, patterns and prospects. Biol. Rev. 87: 111–27.CrossRefGoogle Scholar
  22. Guariguata, M.R. and R. Ostertag. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecol. Manag. 148: 185–206.CrossRefGoogle Scholar
  23. Herben, T. and D.E. Goldberg. 2014. Community assembly by limiting similarity vs. competitive hierarchies: testing the consequences of dispersion of individual traits. J. Ecol. 102: 156–166.CrossRefGoogle Scholar
  24. Herben, T., Z. Novakova, J. Klimesova and L. Hrouda. 2012. Species traits and plant performance: functional trade-offs in a large set of species in a botanical garden. J. Ecol. 100: 1522–1533.CrossRefGoogle Scholar
  25. Keddy, P.A. 1992. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3: 157–164.CrossRefGoogle Scholar
  26. Kembel, S. and S.P. Hubbell. 2006. The phylogenetic structure of a neotropical forest tree community. Ecology 87: 86–99.CrossRefGoogle Scholar
  27. Lack, D. 1942. Ecological features of the bird faunas of British smallislands. J. Anim. Ecol. 11: 9–36.CrossRefGoogle Scholar
  28. Lebrija-Trejos, E., E.A. Pérez-García, J.A. Meave, F. Bongers and L. Poorter. 2010. Functional traits and environmental filtering drive community assembly in a species- rich tropical system. Ecology 91: 386–398.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Letcher, S.G. 2009. Phylogenetic structure of angiosperm communities during tropical forest succession. P. Roy. Soc. Lond. B. Bio. 277: 97–104.CrossRefGoogle Scholar
  30. Letcher, S.G., R.L. Chazdon, A.C.S. Andrade,F. Bongers, M. van Breugel, B. Finegan, S.G. Laurance, R.C.G. Mesquita, M. Martínez-Ramos and G.B. Williamson. 2012. Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspect. Plant Ecol. Evol. Syst. 14: 79–87.CrossRefGoogle Scholar
  31. Liebsch, D., M.C.M Marques and R. Goldenberg. 2008. How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol. Conserv. 141: 1717–1725.CrossRefGoogle Scholar
  32. Lohbeck, M., L. Poorter, H. Paz, L. Plac, M. van Breugel, M. Martínez-Ramos and F. Bongers. 2012. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 14: 89–96.CrossRefGoogle Scholar
  33. Lohbeck, M., L. Poorter, E. Lebrija-Trejos, M. Martínez-Ramos, J.A. Meave, H. Paz, E.A. Pérez-García, E. Romero-Pérez, A. Tauro and F. Bongers. 2013. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94: 1211–1216.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Losos, J.B. 2008. Phylogenetic niche conservatism, phylogenetic signal andthe relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11: 995–1003.PubMedPubMedCentralGoogle Scholar
  35. MacArthur, R. and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101: 377–385.Google Scholar
  36. Marques, M.C.M., M. Swaine and D. Liebsch. 2011. Diversity distribution and floristic differentiation of the coastal lowland vegetation: implications for the conservation of the Brazilian Atlantic Forest. Biodivers. Conserv. 20: 153–168.CrossRefGoogle Scholar
  37. Mayfield, M.M. and J.M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13: 1085–1093.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Meiners, S.J., M.W. Cadotte, J.D. Fridley, S.T.A. Pickett and L.R. Walker. 2015. Is successional research nearing its climax? New approaches for understanding dynamic communities. Funct. Ecol. 29: 154–164.CrossRefGoogle Scholar
  39. Mouquet, N., V. Devictor, C.N. Meynard,F. Munoz, L.F. Bersier, J. Chave, J. et al. 2012. Ecophylogenetics: advances and perspectives. Biol. Rev. 87: 769–785.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mouquet, J.L. Moore and M. Loreau. 2002. Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecol. Lett. 5: 56–65.CrossRefGoogle Scholar
  41. Oliveira-Filho, A.T. and M.A.L. Fontes. 2000. Patterns of floristic differentiation among Atlantic forests in south-eastern Brazil, and the influence of climate. Biotropica 32: 793–810.CrossRefGoogle Scholar
  42. Opler, P.A., H.G. Baker and G.W. Frankie. 1980. Plant reproductive characteristics during secondary succession in neotropical low-land forest ecosystems. Biotropica 12: 40–46.CrossRefGoogle Scholar
  43. Peterson, A.T. 2011. Ecological niche conservatism: a time-structure-dreview of evidence. J. Biogeogr. 38: 817–827.CrossRefGoogle Scholar
  44. Pillar, V.D. and L.D.S Duarte. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecol. Lett. 13: 587–596.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pillar, V.D., L.S. Duarte, E.E. Sosinski and F. Joner. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20: 334–348.CrossRefGoogle Scholar
  46. Pillar, V.D.and E.E. Sosinski. 2003. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14: 323–332.CrossRefGoogle Scholar
  47. Prinzing, A., R. Reiffers, W.G. Braakhekke, S.M. Hennekens, O. Tackenberg, W.A. Ozinga et al. 2008. Less lineages – more trait variation:phylogenetically clustered plant communities are functionally morediverse. Ecol. Lett. 11: 809–819.CrossRefGoogle Scholar
  48. Purschke O., B.C. Schmid, M.T. Sykes, P. Poschlod, S.G. Michalski, W. Durka et al. 2013. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. J. Ecol. 101: 857–866.CrossRefGoogle Scholar
  49. Ribeiro, M.C., J.P. Metzger, A.C. Martensen, F.J. Ponzoni and M.M. Hirota. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142: 1141–1153.CrossRefGoogle Scholar
  50. Ricotta, C. and M. Moretti. 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181–188.CrossRefGoogle Scholar
  51. Rozendaal, D.M.A., V.H. Hurtado and L. Poorter. 2006. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funct. Ecol. 20: 207–216.CrossRefGoogle Scholar
  52. Scarano, F.R. 2002. Structure, function and floristic relationships of plants communities in stressful habitats marginal to Brazilian Atlantic Rainforest. Ann. Bot. 90: 517–524.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Shooner, S., C. Chisholm and T.J. Davies. 2015. The phylogenetics of succession can guide restoration: an example from abandoned mine sites in the subarctic. J. Appl. Ecol. 52: 1509–1517.CrossRefGoogle Scholar
  54. Swenson, N.G. 2013. The assembly of tropical tree communities – the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36: 264–276.CrossRefGoogle Scholar
  55. Srivastava, D.S., M.W. Cadotte,A.A.M. MacDonald, R.G. Marushia and N. Mirotchnick. 2012. Phylogenetic diversity and the functioning ofecosystems. Ecol. Lett. 15: 637–648.CrossRefGoogle Scholar
  56. Webb, C.O., D.D. Ackerly and S.W. Kembel. 2008. Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24: 2098–2100.CrossRefGoogle Scholar
  57. Webb, C.O. and D.R. Peart. 2000. Habitat associations of trees and seedlings in a Bornean rain forest. J. Ecol. 88: 464–78.CrossRefGoogle Scholar
  58. Webb, C.O., D.D. Ackerly, M.A. McPeek and M.J. Donoghue. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33: 475–505.Google Scholar
  59. Weiher, E. and P.A. Keddy. 1999. Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  60. Weiher, E., D. Freund, T. Bunton, A. Stefanski, T. Lee and S. Bentivenga. 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Philos. T. Roy. Soc. B 366: 2403–2413.CrossRefGoogle Scholar
  61. Whitfield, T. J. S., W.J. Kress, D.L. Erickson and G.D. Weiblen. 2012. Change in community phylogenetic structure during tropical forest succession: evidences from New Guinea. Ecography 35: 1–10.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • V. Marcilio-Silva
    • 1
  • V. D. Pillar
    • 2
  • M. C. M. Marques
    • 1
    Email author
  1. 1.Laboratório de Ecologia Vegetal, SCBUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Laboratório de Ecologia Quantitativa, Departamento de Ecologia, IBUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations