Community Ecology

, Volume 16, Issue 2, pp 167–177 | Cite as

Litter quality and temperature modulate microbial diversity effects on decomposition in model experiments

  • G. BonanomiEmail author
  • M. Capodilupo
  • G. Incerti
  • S. Mazzoleni
  • F. Scala


The consequences of decline in biodiversity for ecosystem functioning is a major concern in soil ecology. Recent research efforts have been mostly focused on terrestrial plants, while, despite their importance in ecosystems, little is known about soil microbial communities. This work aims at investigating the effects of fungal and bacterial species richness on the dynamics of leaf litter decomposition. Synthetic microbial communities with species richness ranging from 1 to 64 were assembled in laboratory microcosms and used in three factorial experiments of decomposition. Thereafter, the functionality of the different microcosms was determined by measuring their capability to decompose materials with different chemical properties, including two species of litter (Quercus ilex L. and Hedera helix L.), cellulose strips and woody sticks. Incubation was done in microcosms at two temperatures (12°C and 24°C) for 120 days. The number of microbial species inoculated in the microcosms positively affected decomposition rates of Q. ilex and H. helix litters, while relationships found for cellulose and wood were not statistically significant. Diversity effect was greater at higher incubation temperature. We found lower variability of decay rates in microcosms with higher inoculated species richness of microbial communities. Our study pointed out that the relationships between inoculum microbial diversity and litter decomposition is dependent on temperature and litter quality. Therefore, the loss of microbial species may adversely affects ecosystem functionality under specific environmental conditions.


Biodiversity-ecosystem function Decomposition Ecosystem stability Microbial diversity Niche partitioning Sampling effect 



Biodiversity-Ecosystem Function


Generalized Linear Model


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2015_1602167_MOESM1_ESM.pdf (189 kb)
Supplementary material, approximately 193 KB.


  1. Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439–449.Google Scholar
  2. Bärlocher, F. and Corkum, M. 2003. Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos 101: 247–252.CrossRefGoogle Scholar
  3. Bell, T., Newman, J.A., Silverman, B.W., Turner S.L. and Lilley, A.K. 2005. The contribution of species richness and composition to bacterial services. Nature 436: 1157–1160.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berg, B. and McClaugherty C. 2008. Plant litter: Decomposition, Humus Formation and Carbon Sequestration. Second edition. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
  5. Boddy, L. 2000. Interspecific combative interactions between wood-decaying basidiomycetes – a review. FEMS Microb. Ecol. 31: 185–194.CrossRefGoogle Scholar
  6. Bonanomi, G., Incerti, G., Antignani, V., Capodilupo, M. and Mazzoleni, S. 2010. Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil 331: 481–496.CrossRefGoogle Scholar
  7. Bonanomi, G., D’Ascoli, R., Antignani, V. , Capodilupo, M., Cozzolino, L., Marzaioli, R., Puopolo, G., Rutigliano, F.A., Scelza, R., Scotti, R., Rao, M.A. and Zoina A. 2011a. Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. App. Soil Ecol. 47: 184–194.CrossRefGoogle Scholar
  8. Bonanomi, G., Incerti, G., Barile, E., Capodilupo, M., Antignani, V., Mingo, A., Lanzotti, V., Scala, F. and Mazzoleni, S. 2011b. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectros-copy. New Phytol. 191: 1018–1030.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V. and Mazzoleni, S. 2013. Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biol. Biochem. 56: 40–49.CrossRefGoogle Scholar
  10. Cardinale, B.J., Palmer, M.A. and Collins, S.L. 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415: 426–429.CrossRefGoogle Scholar
  11. Costantini, M.L. and Rossi, L. 2010. Species diversity and decomposition in laboratory aquatic systems: the role of species interactions. Freshwater Biol. 55: 2281–2295.CrossRefGoogle Scholar
  12. Dang, C.K., Chauvet, E. and Gessner, M.O. 2005. Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol. Lett. 8: 1129–1137.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dilly, O., Bloem, J., Vos, A. and Munch, J.C. 2004. Bacterial diversity in agricultural soils during litter decomposition. App. Environ. Microb. 70: 468–474.CrossRefGoogle Scholar
  14. Duarte, S., Pascoal, C., Cássio, F. and Bärlocher, F. 2006. Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia 147: 658–666.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dukes, J.S. 2001. Biodiversity and invasibility in grassland microcosms. Oecologia 126: 563-568.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Frankland, J.C. 1966. Succession of fungi on decaying bracken petioles. J. Ecol. 57: 25–36.CrossRefGoogle Scholar
  17. Frankland, J.C. 1998. Fungal succession - unraveling the unpredictable. Mycol. Res. 102: 1–15.CrossRefGoogle Scholar
  18. Fridley, J.D. 2002. Resources availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132: 271–277.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Garrett, S.D. 1963. Soil Fungi and Soil Fertility. Pergamon Press, Oxford, and Macmillan Co., NY.Google Scholar
  20. Gessner, M.O. 2005. Proximate lignin and cellulose. In: Graca, M.A.S., Bärlocher, F., Gessner, M.O. (eds), Methods to Study Litter Decomposition. A Practical Guide. Springer Verlag, The Netherlands, pp. 115–120.Google Scholar
  21. Griffiths, B.S., Ritz, K., Bardgett, R.D., Cook, R., Christensen, S., Ekelund, F., Sørensen, S.J., Bååth, E., Bloem, J., De Ruiter, P.C., Dolfing, J. and Nicolardot, B. 2000. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90: 279–294.CrossRefGoogle Scholar
  22. Hättenschwiler, S., Tiunov A.V. and Scheu, S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Syst. 36: 191–218CrossRefGoogle Scholar
  23. Hättenschwiler, S. and Gasser, P. 2005. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl. Acad. Sci. USA 102: 1519–1524.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hooper, D.U., Chapin, F.S. III, Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, J., Vandermeer, J. and Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75: 3–35.CrossRefGoogle Scholar
  25. Hooper, D.U. and Dukes, J.S. 2004. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 7: 95–105.CrossRefGoogle Scholar
  26. Huston, M.A. 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449–460.CrossRefGoogle Scholar
  27. Jiang, L. and Morin, P.J. 2005. Productivity gradients cause positive diversity–invasibility relationships in microbial communities. Ecol. Lett. 7: 1047–1057.CrossRefGoogle Scholar
  28. Jiang, L. 2007. Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology 88: 1075-1085.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Keith, A.M., Van Der Wal, R., Brooker, R.W., Osler, G.H.R., Chapman, S.J., Burslem, D.F.R.P. and Elston, D. 2008. Increasing litter species richness reduces variability in a terrestrial decomposer system. Ecology 89: 2657–2664.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Langenheder, S., Bulling, M.T., Solan, M. and Prosser, J.I. 2010. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS ONE 5: e10834.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lecerf, A., Risnoveanu, G., Popescu, C., Gessner, M.O. and Chauvet, E. 2007. Decomposition of diverse litter mixtures in streams. Ecology 88: 219–227.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Loreau, M. and Hector, A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.CrossRefGoogle Scholar
  33. Marquard, E., Weigelt, A., Temperton, V.M., Roscher, C., Schumacher, J., Buchmann, N., Fischer, M., Weisser, W.W. and Schmid, B. 2009. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90: 3290–3302.CrossRefPubMedPubMedCentralGoogle Scholar
  34. McCann, K.S. 2000. The diversity-stability debate. Nature 405: 228– 233.PubMedPubMedCentralGoogle Scholar
  35. McGrady-Steed, J., Harris, P.M. and Morin, P.J. 1997. Biodiversity regulates ecosystem predictability. Nature 390: 162–165.CrossRefGoogle Scholar
  36. Merritt, R. and Lawson, D. 1992. The role of leaf litter macroinvertebrates in stream-floodplain dynamics. Hydrobiologia 248: 65–77.CrossRefGoogle Scholar
  37. Moorhead, D.L. and Sinsabaugh, R.L. 2006. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76: 151– 174.CrossRefGoogle Scholar
  38. Mulder, C.P.H., Uliassi, D.D. and Doak, D.F. 2001. Physical stress and diversity-productivity relationships: the role of positive interactions. Proc. Natl. Acad. Sci. USA 98: 6704–6708.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Naeem, S, Thompson, L.J., Lawier, S.P., Lawton, J.H. and Woodfin, R.M. 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368: 734–737.CrossRefGoogle Scholar
  40. Niklaus, P.A., Leadley, P.W., Schmid, B. and Körner, C. 2001. A long-term study on biodiversity × elevated CO2 interactions in grassland. Ecol. Monogr. 71: 341–356.Google Scholar
  41. Osono, T. 2003. Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate utilization by fungal decomposers. Mycoscience 44: 41–45.CrossRefGoogle Scholar
  42. Preston, C.M., Nault, J.R. and Trofymow, J.A. 2009. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘‘lignin’’. Ecosystems 12: 1078–1102.CrossRefGoogle Scholar
  43. Reich, P.B., Knops, J., Tilman, D., Craine, J.,. Ellsworth, D., Tjoelker, M., Lee, T.,. Wedin, D., Naeem, S., Bahauddin, D., Hendrey, G., Jose, S., Wrage, K., Goth, J. and Bengston, W. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410: 809–812.CrossRefGoogle Scholar
  44. Replansky, T. and Bell, G. 2009. The relationship between environmental complexity, species diversity and productivity in a natural reconstructed yeast community. Oikos 118: 233–239.CrossRefGoogle Scholar
  45. Rinkes, Z.L., Weintraub, M.N., DeForest, J.L. and Moorhead, D.L. 2011. Microbial substrate preference and community dynamics during decomposition of Acer saccharum. Fungal Ecol. 4: 396– 407.CrossRefGoogle Scholar
  46. Romaní, A.M., Fischer, H., Miller-Lindblom, C. and Tranvik, L.J. 2006. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87: 2559– 2569.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Setälä, H. and McLean, M.A. 2004. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139: 98–107.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Srivastava, D.S. and Vellend, M. 2005. Biodiversity-ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Syst. 36: 267–294.CrossRefGoogle Scholar
  49. Swift, M.J., Heal, O.W. and Anderson, J.M. 1979. Decomposition in Terrestrial Ecosystems. Studies in Ecology 5. Blackwell Scientific Publications, Oxford.Google Scholar
  50. Tilman, D. 1996. Biodiversity: population versus ecosystem stability. Ecology 77: 350–363.CrossRefGoogle Scholar
  51. Tilman, D. 1999. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80: 1455–1474.Google Scholar
  52. Tilman, D., Lehman, C.L. and Bristow, C.E. 1998. Diversity–stability relationships: statistical inevitability or ecological consequence? Am. Nat. 151: 277–282.CrossRefGoogle Scholar
  53. Tilman, D., Reich, P.B., Wedin, D., Mielke, T. and Lehman, C. 2001. Diversity and productivity in a long-term grassland experiment. Science 294: 843–845.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tilman, D., Wedin, D. and Knops, J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720.CrossRefGoogle Scholar
  55. Tiunov, A.V. and Scheu, S. 2005. Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol. Lett. 8: 618–625.CrossRefGoogle Scholar
  56. Wallace, J.B., Eggert, S.L., Meyer, J.L. and Webster, J.R. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277(5322): 102–104.CrossRefGoogle Scholar
  57. Wardle, D.A. 1999. Is “sampling effect” a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos 87: 403–407.CrossRefGoogle Scholar
  58. Weis, J.J., Cardinale, B.J., Forshay, K.J. and Ives, A.R. 2007. Effects of species diversity on community biomass production change over the course of succession. Ecology 88: 929–939.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M. and Thomashow, L.S. 2002. Microbial population responsible for specific soil suppressiveness to plant pathogens. Annu Rev. Phytopathol. 40: 309–349.CrossRefPubMedPubMedCentralGoogle Scholar
  60. White, T.J., Bruns, T.D., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylo-genetics. In: White, T.J., Sninsky, J.J., Gelfand, D.H., Innin, M.A. (eds.), PCR Protocols – A Guide to Methods and Applications. Academic Press, San Diego, USA, pp. 315–322.Google Scholar
  61. Wragg, P., Randall, L. and Whatmore, A.M. 2014. Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest. J. Microbiol. Met. 105: 16–21.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • G. Bonanomi
    • 1
    Email author
  • M. Capodilupo
    • 1
  • G. Incerti
    • 1
  • S. Mazzoleni
    • 1
  • F. Scala
    • 1
  1. 1.Dipartimento di AgrariaUniversità di Napoli Federico IIPorticiItaly

Personalised recommendations