Litter quality and temperature modulate microbial diversity effects on decomposition in model experiments

Abstract

The consequences of decline in biodiversity for ecosystem functioning is a major concern in soil ecology. Recent research efforts have been mostly focused on terrestrial plants, while, despite their importance in ecosystems, little is known about soil microbial communities. This work aims at investigating the effects of fungal and bacterial species richness on the dynamics of leaf litter decomposition. Synthetic microbial communities with species richness ranging from 1 to 64 were assembled in laboratory microcosms and used in three factorial experiments of decomposition. Thereafter, the functionality of the different microcosms was determined by measuring their capability to decompose materials with different chemical properties, including two species of litter (Quercus ilex L. and Hedera helix L.), cellulose strips and woody sticks. Incubation was done in microcosms at two temperatures (12°C and 24°C) for 120 days. The number of microbial species inoculated in the microcosms positively affected decomposition rates of Q. ilex and H. helix litters, while relationships found for cellulose and wood were not statistically significant. Diversity effect was greater at higher incubation temperature. We found lower variability of decay rates in microcosms with higher inoculated species richness of microbial communities. Our study pointed out that the relationships between inoculum microbial diversity and litter decomposition is dependent on temperature and litter quality. Therefore, the loss of microbial species may adversely affects ecosystem functionality under specific environmental conditions.

Abbreviations

BEF:

Biodiversity-Ecosystem Function

GLM:

Generalized Linear Model

References

  1. Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439–449.

    Google Scholar 

  2. Bärlocher, F. and Corkum, M. 2003. Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos 101: 247–252.

    Article  Google Scholar 

  3. Bell, T., Newman, J.A., Silverman, B.W., Turner S.L. and Lilley, A.K. 2005. The contribution of species richness and composition to bacterial services. Nature 436: 1157–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berg, B. and McClaugherty C. 2008. Plant litter: Decomposition, Humus Formation and Carbon Sequestration. Second edition. Springer-Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

  5. Boddy, L. 2000. Interspecific combative interactions between wood-decaying basidiomycetes – a review. FEMS Microb. Ecol. 31: 185–194.

    Article  CAS  Google Scholar 

  6. Bonanomi, G., Incerti, G., Antignani, V., Capodilupo, M. and Mazzoleni, S. 2010. Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil 331: 481–496.

    Article  CAS  Google Scholar 

  7. Bonanomi, G., D’Ascoli, R., Antignani, V. , Capodilupo, M., Cozzolino, L., Marzaioli, R., Puopolo, G., Rutigliano, F.A., Scelza, R., Scotti, R., Rao, M.A. and Zoina A. 2011a. Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. App. Soil Ecol. 47: 184–194.

    Article  Google Scholar 

  8. Bonanomi, G., Incerti, G., Barile, E., Capodilupo, M., Antignani, V., Mingo, A., Lanzotti, V., Scala, F. and Mazzoleni, S. 2011b. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectros-copy. New Phytol. 191: 1018–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V. and Mazzoleni, S. 2013. Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biol. Biochem. 56: 40–49.

    Article  CAS  Google Scholar 

  10. Cardinale, B.J., Palmer, M.A. and Collins, S.L. 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415: 426–429.

    Article  CAS  Google Scholar 

  11. Costantini, M.L. and Rossi, L. 2010. Species diversity and decomposition in laboratory aquatic systems: the role of species interactions. Freshwater Biol. 55: 2281–2295.

    Article  Google Scholar 

  12. Dang, C.K., Chauvet, E. and Gessner, M.O. 2005. Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol. Lett. 8: 1129–1137.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dilly, O., Bloem, J., Vos, A. and Munch, J.C. 2004. Bacterial diversity in agricultural soils during litter decomposition. App. Environ. Microb. 70: 468–474.

    Article  CAS  Google Scholar 

  14. Duarte, S., Pascoal, C., Cássio, F. and Bärlocher, F. 2006. Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia 147: 658–666.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dukes, J.S. 2001. Biodiversity and invasibility in grassland microcosms. Oecologia 126: 563-568.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Frankland, J.C. 1966. Succession of fungi on decaying bracken petioles. J. Ecol. 57: 25–36.

    Article  Google Scholar 

  17. Frankland, J.C. 1998. Fungal succession - unraveling the unpredictable. Mycol. Res. 102: 1–15.

    Article  Google Scholar 

  18. Fridley, J.D. 2002. Resources availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132: 271–277.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Garrett, S.D. 1963. Soil Fungi and Soil Fertility. Pergamon Press, Oxford, and Macmillan Co., NY.

    Google Scholar 

  20. Gessner, M.O. 2005. Proximate lignin and cellulose. In: Graca, M.A.S., Bärlocher, F., Gessner, M.O. (eds), Methods to Study Litter Decomposition. A Practical Guide. Springer Verlag, The Netherlands, pp. 115–120.

  21. Griffiths, B.S., Ritz, K., Bardgett, R.D., Cook, R., Christensen, S., Ekelund, F., Sørensen, S.J., Bååth, E., Bloem, J., De Ruiter, P.C., Dolfing, J. and Nicolardot, B. 2000. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90: 279–294.

    Article  Google Scholar 

  22. Hättenschwiler, S., Tiunov A.V. and Scheu, S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Syst. 36: 191–218

    Article  Google Scholar 

  23. Hättenschwiler, S. and Gasser, P. 2005. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl. Acad. Sci. USA 102: 1519–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hooper, D.U., Chapin, F.S. III, Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, J., Vandermeer, J. and Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75: 3–35.

    Article  Google Scholar 

  25. Hooper, D.U. and Dukes, J.S. 2004. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 7: 95–105.

    Article  Google Scholar 

  26. Huston, M.A. 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449–460.

    Article  Google Scholar 

  27. Jiang, L. and Morin, P.J. 2005. Productivity gradients cause positive diversity–invasibility relationships in microbial communities. Ecol. Lett. 7: 1047–1057.

    Article  Google Scholar 

  28. Jiang, L. 2007. Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology 88: 1075-1085.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Keith, A.M., Van Der Wal, R., Brooker, R.W., Osler, G.H.R., Chapman, S.J., Burslem, D.F.R.P. and Elston, D. 2008. Increasing litter species richness reduces variability in a terrestrial decomposer system. Ecology 89: 2657–2664.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Langenheder, S., Bulling, M.T., Solan, M. and Prosser, J.I. 2010. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS ONE 5: e10834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lecerf, A., Risnoveanu, G., Popescu, C., Gessner, M.O. and Chauvet, E. 2007. Decomposition of diverse litter mixtures in streams. Ecology 88: 219–227.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Loreau, M. and Hector, A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.

    Article  CAS  Google Scholar 

  33. Marquard, E., Weigelt, A., Temperton, V.M., Roscher, C., Schumacher, J., Buchmann, N., Fischer, M., Weisser, W.W. and Schmid, B. 2009. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90: 3290–3302.

    Article  PubMed  PubMed Central  Google Scholar 

  34. McCann, K.S. 2000. The diversity-stability debate. Nature 405: 228– 233.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McGrady-Steed, J., Harris, P.M. and Morin, P.J. 1997. Biodiversity regulates ecosystem predictability. Nature 390: 162–165.

    Article  CAS  Google Scholar 

  36. Merritt, R. and Lawson, D. 1992. The role of leaf litter macroinvertebrates in stream-floodplain dynamics. Hydrobiologia 248: 65–77.

    Article  Google Scholar 

  37. Moorhead, D.L. and Sinsabaugh, R.L. 2006. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76: 151– 174.

    Article  Google Scholar 

  38. Mulder, C.P.H., Uliassi, D.D. and Doak, D.F. 2001. Physical stress and diversity-productivity relationships: the role of positive interactions. Proc. Natl. Acad. Sci. USA 98: 6704–6708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naeem, S, Thompson, L.J., Lawier, S.P., Lawton, J.H. and Woodfin, R.M. 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368: 734–737.

    Article  Google Scholar 

  40. Niklaus, P.A., Leadley, P.W., Schmid, B. and Körner, C. 2001. A long-term study on biodiversity × elevated CO2 interactions in grassland. Ecol. Monogr. 71: 341–356.

    Google Scholar 

  41. Osono, T. 2003. Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate utilization by fungal decomposers. Mycoscience 44: 41–45.

    Article  Google Scholar 

  42. Preston, C.M., Nault, J.R. and Trofymow, J.A. 2009. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘‘lignin’’. Ecosystems 12: 1078–1102.

    Article  CAS  Google Scholar 

  43. Reich, P.B., Knops, J., Tilman, D., Craine, J.,. Ellsworth, D., Tjoelker, M., Lee, T.,. Wedin, D., Naeem, S., Bahauddin, D., Hendrey, G., Jose, S., Wrage, K., Goth, J. and Bengston, W. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410: 809–812.

    Article  CAS  Google Scholar 

  44. Replansky, T. and Bell, G. 2009. The relationship between environmental complexity, species diversity and productivity in a natural reconstructed yeast community. Oikos 118: 233–239.

    Article  Google Scholar 

  45. Rinkes, Z.L., Weintraub, M.N., DeForest, J.L. and Moorhead, D.L. 2011. Microbial substrate preference and community dynamics during decomposition of Acer saccharum. Fungal Ecol. 4: 396– 407.

    Article  Google Scholar 

  46. Romaní, A.M., Fischer, H., Miller-Lindblom, C. and Tranvik, L.J. 2006. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87: 2559– 2569.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Setälä, H. and McLean, M.A. 2004. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139: 98–107.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Srivastava, D.S. and Vellend, M. 2005. Biodiversity-ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Syst. 36: 267–294.

    Article  Google Scholar 

  49. Swift, M.J., Heal, O.W. and Anderson, J.M. 1979. Decomposition in Terrestrial Ecosystems. Studies in Ecology 5. Blackwell Scientific Publications, Oxford.

  50. Tilman, D. 1996. Biodiversity: population versus ecosystem stability. Ecology 77: 350–363.

    Article  Google Scholar 

  51. Tilman, D. 1999. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80: 1455–1474.

    Google Scholar 

  52. Tilman, D., Lehman, C.L. and Bristow, C.E. 1998. Diversity–stability relationships: statistical inevitability or ecological consequence? Am. Nat. 151: 277–282.

    Article  CAS  Google Scholar 

  53. Tilman, D., Reich, P.B., Wedin, D., Mielke, T. and Lehman, C. 2001. Diversity and productivity in a long-term grassland experiment. Science 294: 843–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tilman, D., Wedin, D. and Knops, J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720.

    Article  CAS  Google Scholar 

  55. Tiunov, A.V. and Scheu, S. 2005. Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol. Lett. 8: 618–625.

    Article  Google Scholar 

  56. Wallace, J.B., Eggert, S.L., Meyer, J.L. and Webster, J.R. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277(5322): 102–104.

    Article  CAS  Google Scholar 

  57. Wardle, D.A. 1999. Is “sampling effect” a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos 87: 403–407.

    Article  Google Scholar 

  58. Weis, J.J., Cardinale, B.J., Forshay, K.J. and Ives, A.R. 2007. Effects of species diversity on community biomass production change over the course of succession. Ecology 88: 929–939.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M. and Thomashow, L.S. 2002. Microbial population responsible for specific soil suppressiveness to plant pathogens. Annu Rev. Phytopathol. 40: 309–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. White, T.J., Bruns, T.D., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylo-genetics. In: White, T.J., Sninsky, J.J., Gelfand, D.H., Innin, M.A. (eds.), PCR Protocols – A Guide to Methods and Applications. Academic Press, San Diego, USA, pp. 315–322.

    Google Scholar 

  61. Wragg, P., Randall, L. and Whatmore, A.M. 2014. Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest. J. Microbiol. Met. 105: 16–21.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Bonanomi.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonanomi, G., Capodilupo, M., Incerti, G. et al. Litter quality and temperature modulate microbial diversity effects on decomposition in model experiments. COMMUNITY ECOLOGY 16, 167–177 (2015). https://doi.org/10.1556/168.2015.16.2.4

Download citation

Keywords

  • Biodiversity-ecosystem function
  • Decomposition
  • Ecosystem stability
  • Microbial diversity
  • Niche partitioning
  • Sampling effect