Elevation, moisture and shade drive the functional and phylogenetic meadow communities’ assembly in the northeastern Tibetan Plateau

Abstract

Despite a long history of alpine meadows studies, uncertainty remains about the importance of environmental factors in structuring their assembly. We examined the functional and phylogenetic structure of 170 alpine Tibetan meadow communities in relation to elevation, soil moisture and shade. Functional community structure was estimated with both communityweighted mean (CWM) trait values for specific leaf area (SLA), plant height and seed mass and functional diversity (Rao’s quadratic index) for their traits individually and in combination (multivariate functional diversity). We found that shade induced by woody plants significantly increased the phylogenetic diversity and functional diversity of SLA of co-occurring species, suggesting that woody plants behave as “ecosystem engineers” creating a different environment that allows the existence of shade tolerant species and thereby facilitates the coexistence of plant species with different light resource acquisition strategies. We also found evidence for a clear decrease in phylogenetic diversity, CWM and functional diversity related to plant height in the two extreme, both the dry and wet, soil moisture conditions. This indicates that both drought and excess moisture may act as environmental filters selecting species with close phylogenetic relationships and similar height. Moreover, we detected significant decreases in both CWM and functional diversity for seed mass along elevational gradients, suggesting that low net primary productivity (NPP) limits seed size. Finally, because of different individual trait responses to environmental factors, the multivariate functional diversity did not change across environmental gradients. This lack of multivariate response supports the hypothesis that multiple processes, such as environmental filtering, competition and facilitation, may operate simultaneously and exert opposing effects on community assembly along different niche (e.g., water use, light acquisition) axes, resulting in no overall functional community structure change. This contrast between individual and multivariate trait patterns highlights the importance of examining individual traits linked with different ecological processes to better understand the mechanisms of community assembly.

Abbreviations

CWM:

Community Weighted Mean

L-H-S:

Leaf-Height-Seed Scheme

MPD:

Mean Phylogenetic Distance,

NPP:

Net Primary Productivity

SES:

Standardized Effect Size

SLA:

Specific Leaf Area

References

  1. Ackerly, D.D. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environment. Int. J. Plant Sci. 164: 165–184.

    Article  Google Scholar 

  2. Ackerly, D.D. 2004. Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Am. Nat. 163(5): 654–671.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adler, P.B., A. Fajardo, A.R. Kleinhesselink and N.J. Kraft. 2013. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16: 1294–1306.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bailey-Serres, J. and L.A.C.J. Voesenek. 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59: 313– 339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baraloto, C., O.J. Hardy, C.E. Paine, K.G. Dexter, C. Cruaud, L.T. Dunning, M.-A. Gonzalez, J.-F. Molino, D. Sabatier, V. Savolainen and J. Chave. 2012. Using functional traits and phy-logenetic trees to examine the assembly of tropical tree communities. J. Ecol. 100: 690–701.

    Article  Google Scholar 

  6. Baumeister, D. and R.M. Callaway. 2006. Facilitative effects of Pinus fexilis during succession: a hierarchy of mechanisms ben-efits other plant species. Ecology 87: 1816–1830.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bernard-Verdier, M., M.L. Navas, M. Vellend, C. Violle, A. Fayolle and E. Garnier. 2012. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol. 100(6): 1422– 1433.

    Article  Google Scholar 

  8. Bryant, J.A., C. Lamanna, H. Morlon, A.J. Kerkhoff, B.J. Enquist and J.L. Green. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. USA 105 (S1): 11505–11511.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carboni, M., A.T. Acosta and C. Ricotta. 2013. Are differences in functional diversity among plant communities on Mediterranean coastal dunes driven by their phylogenetic history? J. Veg. Sci. 24(5): 932–941.

    Article  Google Scholar 

  10. Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31: 343–366.

    Article  Google Scholar 

  11. Cornwell, W.K. and D.D. Ackerly. 2009. Community assembly and shifts in the distribution of trait values across an environmental gradient in coastal California. Ecol. Monogr. 79: 109–126.

    Article  Google Scholar 

  12. Cornwell, W.K., D.W. Schwilk and D.D. Ackerly. 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465– 1471.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Crisp, M.D., M.T.K. Arroyo, L.G. Cook, M.A. Gandolfo, G.J. Jordan, M.S. McGlone, P.H. Weston, M. Westoby, P. Wilf and H.P. Linder. 2009. Phylogenetic biome conservation on a global scale. Nature 458: 754–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. CVEC, CAS (The China Vegetation Editorial Committee, Chinese Academy of Sciences). 1980. Vegetation of China. Science, Beijing.

    Google Scholar 

  15. Du, G. and W. Qi. 2010. Trade-offs between flowering time, plant height, and seed size within and across 11 communities of a QingHai-Tibetan flora. Plant Ecol. 209: 321–333.

    Article  Google Scholar 

  16. Dornelas, M., S.R. Connolly and T.P. Hughes. 2006. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440: 80–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duarte, L.S. 2011. Phylogenetic habitat filtering influences forest nu-cleation in grasslands. Oikos 120: 208–215.

    Article  Google Scholar 

  18. Freckleton, R.P., P.H. Harvey and M. Pagel. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160: 712–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gibbs, J. and H. Greenway. 2003. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabo-lism. Funct. Plant Biol. 30: 353–353.

    Article  Google Scholar 

  20. Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J. Veg. Sci. 17: 255–260.

    Article  Google Scholar 

  21. Gross, N., T.M. Robson, S. Lavorel, C. Albert, L. Bagousse-Pinguet and R. Guillemin. 2008. Plant response traits mediate the effects of subalpine grasslands on soil moisture. New Phytol. 180: 652– 662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hakes, A.S. and J.T. Cronin. 2011. Environmental heterogeneity and spatiotemporal variability in plant defense traits. Oikos 120(3): 452–462.

    Article  Google Scholar 

  23. Harmon, L., J. Weir, C. Brock, R. Glor, W. Challenger, G. Hunt, R. FitzJohn, M. Pennell, G. Slater, J. Brown, J. Uyeda and J. Eastman. 2014. GEIGER: analysis of evolutionary diversifica-tion. R package version 2.0.3. Available at https://doi.org/cran.r-project.org/package=geiger.

  24. Hubbell, S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey, USA.

    Google Scholar 

  25. Karst, J., B. Gilbert and M.J. Lechowicz. 2005. Fern community assembly: the roles of chance and the environment at local and intermediate scales. Ecology 86: 2473–2486.

    Article  Google Scholar 

  26. Katabuchi, M., H. Kurokawa, S.J. Davies, S. Tan and T. Nakashizuka. 2012. Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. J. Ecol. 100(3): 643–651.

    Article  Google Scholar 

  27. Kembel, S.W. and S.P. Hubbell. 2006. The phylogenetic structure of a neotropical forest tree community. Ecology 87: S86–S99.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klein, J.A., J. Harte and X. Zhao. 2007. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol. Appl. 17: 541–557.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kraft, N.J.B., W.K. Cornwell, C.O. Webb and D.D. Ackerly. 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170: 271–283.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kluge, J. and M. Kessler. 2011. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J. Biogeog. 38: 394–405.

    Article  Google Scholar 

  31. Lavorel, S., K. Grigulis, S. McIntyre, N.S.G. Williams, D. Garden, J. Dorrough, S. Berman, F. Quetier, A. Thebault and A. Bonis. 2008. Assessing functional diversity in the field–methodology matters! Funct. Ecol. 22: 134–147.

    Google Scholar 

  32. Lebrija-Trejos, E., E.A. Perez-Garcia, J.A. Meave, F. Bongers and L. Poorter. 2010. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91: 386–398.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Leibold, M.A., E.P. Economo and P. Peres-Neto. 2010. Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol. Lett. 13: 1290– 1299.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lewis, R.J., R.H. Marrs and R.J. Pakeman. 2014. Inferring temporal shifts in landuse intensity from functional response traits and functional diversity patterns: a study of Scotland’s machair grassland. Oikos 123: 334–344.

    Article  Google Scholar 

  35. Li, X. X. Zhu, Y. Niu and H. Sun. 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Syst. Evol. 52 (3): 280–288.

    Article  Google Scholar 

  36. Lloret, F., F. Médail, G. Brundu and P. Hulme. 2004. Local and regional abundance of exotic plant species on Mediterranean islands: are species traits important? Global Ecol. Biogeogr. 13: 37–45.

    Article  Google Scholar 

  37. MacArthur, R.H. and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101: 377–385.

    Article  Google Scholar 

  38. McGill, B.J., B.J. Enquist, E. Weiher and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21: 178–185.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Myers, J.A. and K. Kitajima. 2007. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95: 383–395.

    Article  CAS  Google Scholar 

  40. Norden, N., S.G. Letcher, V. Boukili, N.G. Swenson and R. Chazdon. 2012. Demographic drivers of successional changes in phyloge-netic structure across life-history changes in plant communities. Ecology 93: S70–S82.

    Article  Google Scholar 

  41. Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pillar, V.D., L.D.S. Duarte, E.E. Sosinski and F. Joner. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20: 334– 348.

    Article  Google Scholar 

  43. Qi, W., S. Guo, X. Chen, J.H.C. Cornelissen, H. Bu, G. Du, X. Cui, W. Li and K. Liu. 2014a. Disentangling ecological, allometric and evolutionary determinants of the relationship between seed mass and elevation: insights from multiple analyses of 1355 angiosperm species on the eastern Tibetan Plateau. Oikos 123: 23–32.

    Article  Google Scholar 

  44. Qi, W., H. Bu, K. Liu, W. Li, J.M. Knops, J. Wang, W. Li and G. Du. 2014b. Biological traits are correlated with elevational distribution range of eastern Tibetan herbaceous species. Plant Ecol. 215: 1187–1198.

    Article  Google Scholar 

  45. R Development Core Team. 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. Available at https://doi.org/www.R-project.org.

  46. Ricklefs, R.E. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7: 1–15.

    Article  Google Scholar 

  47. Ricotta, C. and M. Moretti. 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181–188.

  48. Schluter, D. 2000. Ecological character displacement in adaptive radiation. Am. Nat. 156: S4–S16.

    Article  Google Scholar 

  49. Silvertown, J., M. Dodd, D. Gowing, C. Lawson and K. McConway. 2006. Phylogeny and the hierarchical organization of plant diversity. Ecology 87: S39–S49.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Spasojevic, M.J. and K.N. Suding. 2012. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100: 652–661.

    Article  Google Scholar 

  51. Swenson, N.G., P. Anglada-Cordero and J.A. Barone. 2011. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc. R. Soc. B 278: 877–884.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tirado, R. and F.I. Pugnaire. 2005. Community structure and positive interactions in constraining environments. Oikos 111: 437–444.

    Article  Google Scholar 

  53. Valiente-Banuet, A. and M. Verdú. 2007. Facilitation can increase the phylogenetic diversity of plant communities. Ecol. Lett. 10: 1029–1036.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Valladares, F. and Ü. Niinemets. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. S. 39:237–257.

    Article  Google Scholar 

  55. Vamosi, S.M., S.B. Heard, J.C. Vamosi and C.O. Webb. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18: 572–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Verdú, M., P.J. Rey, J.M. Alcántara, G. Siles and A. Valiente-Banuet. 2009. Phylogenetic signatures of facilitation and competition in successional communites. J. Ecol. 97: 1171–1180.

    Article  Google Scholar 

  57. Wang, Z., Z. Tang and J. Fang. 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Divers. Distrib. 13: 845–854.

    Article  Google Scholar 

  58. Webb, C.O., D.D. Ackerly, M.A. McPeek and M.J. Donoghue. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33: 475–505.

    Article  Google Scholar 

  59. Webb, C.O., D.D. Ackerly and S.W. Kembel. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 18: 2098–2100.

    Article  CAS  Google Scholar 

  60. Weiher, E. and P.A. Keddy. 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159– 165.

    Google Scholar 

  61. Weiher, E., G.D.P. Clarke and P.A. Keddy. 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81: 309–322.

    Article  Google Scholar 

  62. Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199: 213–227.

    Article  CAS  Google Scholar 

  63. Westoby, M., D.S. Falster, A.T. Moles, P.A. Vesk and I.J. Wright. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33: 125–159.

    Article  Google Scholar 

  64. Westoby, M. and I.J. Wright. 2006. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21: 261–268.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wiens, J. J. and C.H. Graham. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. S. 36: 519–539.

    Article  Google Scholar 

  66. Wikström, N., V. Savolainen and M.W. Chase. 2001. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. B 268: 2211–2220.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Willis, C.G., M. Halina, C. Lehman, P.B. Reich, A. Keen, S. McCarthy and J. Cavender-Bares. 2010. Phylogenetic community structure in Minnesota oak savanna is infuenced by spatial extent and environmental variation. Ecography 33(3): 565–577.

    Google Scholar 

  68. Wu, C.Y. and P.H. Raven (eds). 1994–2013. Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis.

  69. Yang, Z., R.P. Jeff, C. Zhang and G. Du. 2012. The effect of environmental and phylogenetic drivers on community assembly in an alpine meadow community. Ecology 93: 2321–2328.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Du.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Zhou, X., Ma, M. et al. Elevation, moisture and shade drive the functional and phylogenetic meadow communities’ assembly in the northeastern Tibetan Plateau. COMMUNITY ECOLOGY 16, 66–75 (2015). https://doi.org/10.1556/168.2015.16.1.8

Download citation

Keywords

  • Community assembly
  • Functional diversity
  • Phylogenetic diversity
  • Plant height
  • Specific leaf area
  • Seed mass

Nomenclature

  • Wu and Raven (1994-2013)