Advertisement

Community Ecology

, Volume 16, Issue 1, pp 66–75 | Cite as

Elevation, moisture and shade drive the functional and phylogenetic meadow communities’ assembly in the northeastern Tibetan Plateau

  • W. Qi
  • X. Zhou
  • M. Ma
  • J. M. H. Knops
  • W. Li
  • G. DuEmail author
Article

Abstract

Despite a long history of alpine meadows studies, uncertainty remains about the importance of environmental factors in structuring their assembly. We examined the functional and phylogenetic structure of 170 alpine Tibetan meadow communities in relation to elevation, soil moisture and shade. Functional community structure was estimated with both communityweighted mean (CWM) trait values for specific leaf area (SLA), plant height and seed mass and functional diversity (Rao’s quadratic index) for their traits individually and in combination (multivariate functional diversity). We found that shade induced by woody plants significantly increased the phylogenetic diversity and functional diversity of SLA of co-occurring species, suggesting that woody plants behave as “ecosystem engineers” creating a different environment that allows the existence of shade tolerant species and thereby facilitates the coexistence of plant species with different light resource acquisition strategies. We also found evidence for a clear decrease in phylogenetic diversity, CWM and functional diversity related to plant height in the two extreme, both the dry and wet, soil moisture conditions. This indicates that both drought and excess moisture may act as environmental filters selecting species with close phylogenetic relationships and similar height. Moreover, we detected significant decreases in both CWM and functional diversity for seed mass along elevational gradients, suggesting that low net primary productivity (NPP) limits seed size. Finally, because of different individual trait responses to environmental factors, the multivariate functional diversity did not change across environmental gradients. This lack of multivariate response supports the hypothesis that multiple processes, such as environmental filtering, competition and facilitation, may operate simultaneously and exert opposing effects on community assembly along different niche (e.g., water use, light acquisition) axes, resulting in no overall functional community structure change. This contrast between individual and multivariate trait patterns highlights the importance of examining individual traits linked with different ecological processes to better understand the mechanisms of community assembly.

Keywords

Community assembly Functional diversity Phylogenetic diversity Plant height Specific leaf area Seed mass 

Nomenclature

Wu and Raven (1994-2013) 

Abbreviations

CWM

Community Weighted Mean

L-H-S

Leaf-Height-Seed Scheme

MPD

Mean Phylogenetic Distance,

NPP

Net Primary Productivity

SES

Standardized Effect Size

SLA

Specific Leaf Area

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2015_16010066_MOESM1_ESM.pdf (322 kb)
Supplementary material, approximately 330 KB.

References

  1. Ackerly, D.D. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environment. Int. J. Plant Sci. 164: 165–184.CrossRefGoogle Scholar
  2. Ackerly, D.D. 2004. Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Am. Nat. 163(5): 654–671.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adler, P.B., A. Fajardo, A.R. Kleinhesselink and N.J. Kraft. 2013. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16: 1294–1306.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailey-Serres, J. and L.A.C.J. Voesenek. 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59: 313– 339.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baraloto, C., O.J. Hardy, C.E. Paine, K.G. Dexter, C. Cruaud, L.T. Dunning, M.-A. Gonzalez, J.-F. Molino, D. Sabatier, V. Savolainen and J. Chave. 2012. Using functional traits and phy-logenetic trees to examine the assembly of tropical tree communities. J. Ecol. 100: 690–701.CrossRefGoogle Scholar
  6. Baumeister, D. and R.M. Callaway. 2006. Facilitative effects of Pinus fexilis during succession: a hierarchy of mechanisms ben-efits other plant species. Ecology 87: 1816–1830.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bernard-Verdier, M., M.L. Navas, M. Vellend, C. Violle, A. Fayolle and E. Garnier. 2012. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol. 100(6): 1422– 1433.CrossRefGoogle Scholar
  8. Bryant, J.A., C. Lamanna, H. Morlon, A.J. Kerkhoff, B.J. Enquist and J.L. Green. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. USA 105 (S1): 11505–11511.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carboni, M., A.T. Acosta and C. Ricotta. 2013. Are differences in functional diversity among plant communities on Mediterranean coastal dunes driven by their phylogenetic history? J. Veg. Sci. 24(5): 932–941.CrossRefGoogle Scholar
  10. Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31: 343–366.CrossRefGoogle Scholar
  11. Cornwell, W.K. and D.D. Ackerly. 2009. Community assembly and shifts in the distribution of trait values across an environmental gradient in coastal California. Ecol. Monogr. 79: 109–126.CrossRefGoogle Scholar
  12. Cornwell, W.K., D.W. Schwilk and D.D. Ackerly. 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465– 1471.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crisp, M.D., M.T.K. Arroyo, L.G. Cook, M.A. Gandolfo, G.J. Jordan, M.S. McGlone, P.H. Weston, M. Westoby, P. Wilf and H.P. Linder. 2009. Phylogenetic biome conservation on a global scale. Nature 458: 754–758.CrossRefPubMedPubMedCentralGoogle Scholar
  14. CVEC, CAS (The China Vegetation Editorial Committee, Chinese Academy of Sciences). 1980. Vegetation of China. Science, Beijing.Google Scholar
  15. Du, G. and W. Qi. 2010. Trade-offs between flowering time, plant height, and seed size within and across 11 communities of a QingHai-Tibetan flora. Plant Ecol. 209: 321–333.CrossRefGoogle Scholar
  16. Dornelas, M., S.R. Connolly and T.P. Hughes. 2006. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440: 80–82.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duarte, L.S. 2011. Phylogenetic habitat filtering influences forest nu-cleation in grasslands. Oikos 120: 208–215.CrossRefGoogle Scholar
  18. Freckleton, R.P., P.H. Harvey and M. Pagel. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160: 712–726.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gibbs, J. and H. Greenway. 2003. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabo-lism. Funct. Plant Biol. 30: 353–353.CrossRefGoogle Scholar
  20. Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J. Veg. Sci. 17: 255–260.CrossRefGoogle Scholar
  21. Gross, N., T.M. Robson, S. Lavorel, C. Albert, L. Bagousse-Pinguet and R. Guillemin. 2008. Plant response traits mediate the effects of subalpine grasslands on soil moisture. New Phytol. 180: 652– 662.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hakes, A.S. and J.T. Cronin. 2011. Environmental heterogeneity and spatiotemporal variability in plant defense traits. Oikos 120(3): 452–462.CrossRefGoogle Scholar
  23. Harmon, L., J. Weir, C. Brock, R. Glor, W. Challenger, G. Hunt, R. FitzJohn, M. Pennell, G. Slater, J. Brown, J. Uyeda and J. Eastman. 2014. GEIGER: analysis of evolutionary diversifica-tion. R package version 2.0.3. Available at https://doi.org/cran.r-project.org/package=geiger.
  24. Hubbell, S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  25. Karst, J., B. Gilbert and M.J. Lechowicz. 2005. Fern community assembly: the roles of chance and the environment at local and intermediate scales. Ecology 86: 2473–2486.CrossRefGoogle Scholar
  26. Katabuchi, M., H. Kurokawa, S.J. Davies, S. Tan and T. Nakashizuka. 2012. Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. J. Ecol. 100(3): 643–651.CrossRefGoogle Scholar
  27. Kembel, S.W. and S.P. Hubbell. 2006. The phylogenetic structure of a neotropical forest tree community. Ecology 87: S86–S99.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Klein, J.A., J. Harte and X. Zhao. 2007. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol. Appl. 17: 541–557.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kraft, N.J.B., W.K. Cornwell, C.O. Webb and D.D. Ackerly. 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170: 271–283.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kluge, J. and M. Kessler. 2011. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J. Biogeog. 38: 394–405.CrossRefGoogle Scholar
  31. Lavorel, S., K. Grigulis, S. McIntyre, N.S.G. Williams, D. Garden, J. Dorrough, S. Berman, F. Quetier, A. Thebault and A. Bonis. 2008. Assessing functional diversity in the field–methodology matters! Funct. Ecol. 22: 134–147.Google Scholar
  32. Lebrija-Trejos, E., E.A. Perez-Garcia, J.A. Meave, F. Bongers and L. Poorter. 2010. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91: 386–398.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Leibold, M.A., E.P. Economo and P. Peres-Neto. 2010. Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol. Lett. 13: 1290– 1299.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lewis, R.J., R.H. Marrs and R.J. Pakeman. 2014. Inferring temporal shifts in landuse intensity from functional response traits and functional diversity patterns: a study of Scotland’s machair grassland. Oikos 123: 334–344.CrossRefGoogle Scholar
  35. Li, X. X. Zhu, Y. Niu and H. Sun. 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Syst. Evol. 52 (3): 280–288.CrossRefGoogle Scholar
  36. Lloret, F., F. Médail, G. Brundu and P. Hulme. 2004. Local and regional abundance of exotic plant species on Mediterranean islands: are species traits important? Global Ecol. Biogeogr. 13: 37–45.CrossRefGoogle Scholar
  37. MacArthur, R.H. and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101: 377–385.CrossRefGoogle Scholar
  38. McGill, B.J., B.J. Enquist, E. Weiher and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21: 178–185.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Myers, J.A. and K. Kitajima. 2007. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95: 383–395.CrossRefGoogle Scholar
  40. Norden, N., S.G. Letcher, V. Boukili, N.G. Swenson and R. Chazdon. 2012. Demographic drivers of successional changes in phyloge-netic structure across life-history changes in plant communities. Ecology 93: S70–S82.CrossRefGoogle Scholar
  41. Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pillar, V.D., L.D.S. Duarte, E.E. Sosinski and F. Joner. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20: 334– 348.CrossRefGoogle Scholar
  43. Qi, W., S. Guo, X. Chen, J.H.C. Cornelissen, H. Bu, G. Du, X. Cui, W. Li and K. Liu. 2014a. Disentangling ecological, allometric and evolutionary determinants of the relationship between seed mass and elevation: insights from multiple analyses of 1355 angiosperm species on the eastern Tibetan Plateau. Oikos 123: 23–32.CrossRefGoogle Scholar
  44. Qi, W., H. Bu, K. Liu, W. Li, J.M. Knops, J. Wang, W. Li and G. Du. 2014b. Biological traits are correlated with elevational distribution range of eastern Tibetan herbaceous species. Plant Ecol. 215: 1187–1198.CrossRefGoogle Scholar
  45. R Development Core Team. 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. Available at https://doi.org/www.R-project.org.
  46. Ricklefs, R.E. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7: 1–15.CrossRefGoogle Scholar
  47. Ricotta, C. and M. Moretti. 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181–188.Google Scholar
  48. Schluter, D. 2000. Ecological character displacement in adaptive radiation. Am. Nat. 156: S4–S16.CrossRefGoogle Scholar
  49. Silvertown, J., M. Dodd, D. Gowing, C. Lawson and K. McConway. 2006. Phylogeny and the hierarchical organization of plant diversity. Ecology 87: S39–S49.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Spasojevic, M.J. and K.N. Suding. 2012. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100: 652–661.CrossRefGoogle Scholar
  51. Swenson, N.G., P. Anglada-Cordero and J.A. Barone. 2011. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc. R. Soc. B 278: 877–884.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tirado, R. and F.I. Pugnaire. 2005. Community structure and positive interactions in constraining environments. Oikos 111: 437–444.CrossRefGoogle Scholar
  53. Valiente-Banuet, A. and M. Verdú. 2007. Facilitation can increase the phylogenetic diversity of plant communities. Ecol. Lett. 10: 1029–1036.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Valladares, F. and Ü. Niinemets. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. S. 39:237–257.CrossRefGoogle Scholar
  55. Vamosi, S.M., S.B. Heard, J.C. Vamosi and C.O. Webb. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18: 572–592.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Verdú, M., P.J. Rey, J.M. Alcántara, G. Siles and A. Valiente-Banuet. 2009. Phylogenetic signatures of facilitation and competition in successional communites. J. Ecol. 97: 1171–1180.CrossRefGoogle Scholar
  57. Wang, Z., Z. Tang and J. Fang. 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Divers. Distrib. 13: 845–854.CrossRefGoogle Scholar
  58. Webb, C.O., D.D. Ackerly, M.A. McPeek and M.J. Donoghue. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33: 475–505.CrossRefGoogle Scholar
  59. Webb, C.O., D.D. Ackerly and S.W. Kembel. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 18: 2098–2100.CrossRefGoogle Scholar
  60. Weiher, E. and P.A. Keddy. 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159– 165.Google Scholar
  61. Weiher, E., G.D.P. Clarke and P.A. Keddy. 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81: 309–322.CrossRefGoogle Scholar
  62. Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199: 213–227.CrossRefGoogle Scholar
  63. Westoby, M., D.S. Falster, A.T. Moles, P.A. Vesk and I.J. Wright. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33: 125–159.CrossRefGoogle Scholar
  64. Westoby, M. and I.J. Wright. 2006. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21: 261–268.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wiens, J. J. and C.H. Graham. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. S. 36: 519–539.CrossRefGoogle Scholar
  66. Wikström, N., V. Savolainen and M.W. Chase. 2001. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. B 268: 2211–2220.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Willis, C.G., M. Halina, C. Lehman, P.B. Reich, A. Keen, S. McCarthy and J. Cavender-Bares. 2010. Phylogenetic community structure in Minnesota oak savanna is infuenced by spatial extent and environmental variation. Ecography 33(3): 565–577.Google Scholar
  68. Wu, C.Y. and P.H. Raven (eds). 1994–2013. Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis.Google Scholar
  69. Yang, Z., R.P. Jeff, C. Zhang and G. Du. 2012. The effect of environmental and phylogenetic drivers on community assembly in an alpine meadow community. Ecology 93: 2321–2328.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • W. Qi
    • 1
  • X. Zhou
    • 1
  • M. Ma
    • 1
  • J. M. H. Knops
    • 2
  • W. Li
    • 1
  • G. Du
    • 1
    Email author
  1. 1.State Key Laboratory of Grassland Agroecosystems, School of Life SciencesLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.School of Biological SciencesUniversity of NebraskaLincolnUSA

Personalised recommendations