Advertisement

Community Ecology

, Volume 16, Issue 1, pp 1–9 | Cite as

Recurrent patterns of phylogenetic habitat fltering in woody plant communities across phytogeographically distinct grassland-forest ecotones

  • V. J. DebastianiEmail author
  • S. C. Muller
  • J. M. Oliveira
  • F. S. Rocha
  • M. C. Sestren-Bastos
  • L. D. S. Duarte
Article

Abstract

The phylogenetic relationship among species may influence the mechanisms controlling local community assembly in ecological time. We analyzed the degree of recurrence of phylogenetic structure patterns in woody plant communities distributed along grassland-forest ecotones, across different vegetation types in southern Brazil, and the effect of phylogenetic pool size used to assess such patterns. Species frequency in quadrats distributed along grassland-forest ecotones was surveyed in different phytogeographic regions, where forests tend to expand over grasslands. We used principal coordinates of phylogenetic structure (PCPS) to evaluate the structure within vegetation quadrats divided into three habitat categories: grassland, forest edge and forest interior. Furthermore, phylogenetic structure measures were computed using different phylogenetic pool sizes. Our analyses showed consistent patterns in relation to habitat categories and to different phylogenetic pool sizes. Basal clades of angiosperms were associated with forest areas, while late-divergence clades were associated with grasslands. These results suggest that grasslands act as phylogenetic habitat filters to forest woody species, independently of species composition at each site and the phylogenetic pool. Rosanae and Asteranae act as vanguards of forest expansion over grasslands, while Magnolianae species tend to be restricted to forest. Our results shed light on the organization of ecological systems, providing evidence of recurrent phylogenetic structure patterns in ecotone plant communities at regional scale.

Keywords

Community assembly Edge effect Phylogenetic structure Forest expansion Phylogenetic pool Phylogenetic diversity 

Nomenclature

The International Plant Names Index 

Abbreviations

PCPS

Principal Coordinates of Phylogenetic Structure

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2015_16010001_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1072 KB.

References

  1. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol 26: 32–46.Google Scholar
  2. APG. 2009. An update of the Angiosperm Phylogeny Group classi-fcation for the orders and families of fowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121.CrossRefGoogle Scholar
  3. Behling, H. 2002. South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr. Palaeocl. 177: 19–27.CrossRefGoogle Scholar
  4. Behling, H. and Pillar, V.D. 2007. Late Quaternary vegetation, biodiversity and fre dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philos. T. Roy. Soc. B 362: 243–251.CrossRefGoogle Scholar
  5. Bell, C.D., Soltis, D.E. and Soltis, P.S. 2010. The age and diversifca-tion of the angiosperms re-revisited. Am. J. Bot. 97: 1–8.CrossRefGoogle Scholar
  6. Bond, W.J. and Midgley, G.F. 2000. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6: 865–869.CrossRefGoogle Scholar
  7. Borenstein, M., Hedges, L.V., Higgins, J.P.T. and Rothstein, H.R. 2009. Introduction to Meta-analysis. Wiley. Chichester, UKCrossRefGoogle Scholar
  8. Boyce, C.K., Brodribb, T.J., Feild, T.S. and Zwieniecki, M.A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. P. Roy. Soc. Lond. B Biol. 276: 1771–1776.CrossRefGoogle Scholar
  9. Brodribb, T.J. and Feild, T.S. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversifcation. Ecol. Lett. 13: 175–183.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burns, J.H. and Strauss, S.Y. 2011. More closely related species are more ecologically similar in an experimental test. P. Natl. Acad. Sci. USA 108: 5302–5307.CrossRefGoogle Scholar
  11. Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. and Kembel, S.W. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12: 693–715.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crisp, M.D., Arroyo, M.T.K., Cook, L.G., Gandolfo, M.A., Jordan, G.J., McGlone, M.S., Weston, P.H., Westoby,M., Wilf, P. and Linder, H.P. 2009. Phylogenetic biome conservatism on a global scale. Nature 458: 754–756.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. J. Murray. London, UK.Google Scholar
  14. Diamond, J.H. 1975. Assembly of species communities. In: Cody M.L. and Diamond, J.H. (eds), Ecology and Evolution of Communities. Belknap Press. Cambridge, US. pp. 342–444.Google Scholar
  15. Donoghue, M.J. 2008. A phylogenetic perspective on the distribution of plant diversity. P. Natl. Acad. Sci. USA 105: 11549–11555.CrossRefGoogle Scholar
  16. Duarte, L.D.S. 2011. Phylogenetic habitat fltering infuences forest nucleation in grasslands. Oikos 120: 208–215.CrossRefGoogle Scholar
  17. Duarte, L.D.S., Carlucci, M.B., Hartz , S.M. and Pillar, V.D. 2007. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland-forest mosaic. J. Veg. Sci. 18: 847–858.CrossRefGoogle Scholar
  18. Feild, T.S., Arens, N.C., Doyle, J.A., Dawson, T.E. and Donoghue, M.J. 2004. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30: 82–107.CrossRefGoogle Scholar
  19. Feild, T.S., Upchurch Jr., G.R., Chatelet, D.S., Brodribb, T.J., Grubbse, K.C., Samain, M. and Wanke, S. 2011. Fossil evidence for low gas exchange capacities for Early Cretaceous angio-sperm leaves. Paleobiology 37: 195–213.CrossRefGoogle Scholar
  20. Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15.Google Scholar
  21. Gotelli, N.J. and Entsminger, G.L. 2001. Swap and fll algorithms in null model analysis: rethinking the knight’s tour. Oecologia 129: 281–291.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J., Brosofske, K.D., Saunders, S.C., Euskirchen, E.S., Roberts, D., Jaiteh, M.S. and Esseem, P. 2005. Edge infuence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19: 768–782.CrossRefGoogle Scholar
  23. Hubbell, S. 2001. The Unifed Neutral Theory of Biodiversity and Biogeography. Princeton University Press. Princeton, US.Google Scholar
  24. IBGE. 1986. Levantamento dos Recursos Naturais, Projeto Radam Brasil. Volume 33. IBGE. Rio de Janeiro, BR.Google Scholar
  25. Jackson, D.A. 1995. PROTEST: A Procrustean randomization test of community environment concordance. Écoscience 2: 297–303.CrossRefGoogle Scholar
  26. Kapos, V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. J. Trop. Ecol. 5: 173–185.CrossRefGoogle Scholar
  27. Keddy, P. and Weiher, E. 1999. Introduction: The scope and goals of research on assembly rules. In : Weiher, E. and Keddy, P. (Eds.), Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press. Cambridge, UK. pp. 1–20.Google Scholar
  28. Kembel, S.W. and Hubbell, S. P. 2006. The phylogenetic structure of a neotropical forest tree community. Ecology 87: 86–99.CrossRefGoogle Scholar
  29. Kooyman, R., Rossetto, M., Cornwell, W. and Westoby, M. 2011. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Global Ecol. Biogeogr. 20: 707–716.CrossRefGoogle Scholar
  30. Laurance, W.F., Lovejoy, T.E., Vasconcelos, H.L., Bruna, E.M., Didham, R.K., Stouffer, P.C., Gascon, C., Bierregaard, R.O., Laurance, S.G. and Sampaio, E. 2002. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16: 605–618.CrossRefGoogle Scholar
  31. Laurance, W.F, Nascimento, H.E.M., Laurance, S.G., Andrade, A.C.S., Ribeiro, J.E.L.S., Giraldo, J.P., Lovejoy, T.E., Condit, R.S., Chave, J., Harms, K.E. and D’Angelo, S.A. 2006. Rapid decay of tree-community composition in Amazonian forest fragments. P. Natl. Acad. Sci. USA 103: 19010–19014.CrossRefGoogle Scholar
  32. Legendre, P. and Legendre, L. 1998. Numerical Ecology. Elsevier. Amsterdam, NL.Google Scholar
  33. Leite, P.F. 2002. Contribuição ao conhecimento ftoecológico do sul do Brasil. Ciência & Ambiente 24: 51–73.Google Scholar
  34. Letcher, S.G. 2010. Phylogenetic structure of angiosperm communities during tropical forest succession. P. Roy. Soc. Lond. B Biol. 277: 97–104.CrossRefGoogle Scholar
  35. Matlack, G.R. 1994. Vegetation dynamics of the forest edge trends in space and successional time. J. Ecol. 88: 113–123.CrossRefGoogle Scholar
  36. Müller, S.C., Overbeck, G.E., Pfadenhauer, J. and Pillar, V.D. 2012. Woody species patterns at forest-grassland boundaries in southern Brazil. Flora 207: 586–598.CrossRefGoogle Scholar
  37. Oliveira, J. M. and Pillar, V. D. 2004. Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil. Community. Ecol. 5: 197–202.CrossRefGoogle Scholar
  38. Parmentier, I. and Hardy, O.J. 2009. The impact of ecological differentiation and dispersal limitation on species turnover and phy-logenetic structure of inselberg’s plant communities. Ecography 32: 613–622.CrossRefGoogle Scholar
  39. Pillar, V.D. and Duarte, L.S. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecol. Lett. 13: 587–596.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rambo, B. 1956. A fsionomia do Rio Grande do Sul. 2nd ed. Selbach. Porto Alegre, BR.Google Scholar
  41. Ricklefs, R.E. 1987. Community diversity: relative roles of local and regional processes. Science. 235: 167–171.Google Scholar
  42. Ries, L. Fletcher, R.J.J., Battin, J. and Sisk, T.D. 2004. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol. Syst. 35: 491–522.CrossRefGoogle Scholar
  43. Santos, B.A., Arroyo-Rodríguez, V., Moreno, C.E. and Tabarelli, M. 2010. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian atlantic forest. PloS one 5: e12625.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Scholes, R.J. and Archer, S.R. 1997. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28: 517–544.CrossRefGoogle Scholar
  45. Sokal, R.R. and Rohlf, F.J. 1994. Biometry. W.H. Freeman and Co. New York, US.Google Scholar
  46. Soltis, D.E., Smith, S.A., Cellinese, N. et al. 2011. Angiosperm phy-logeny: 17 genes, 640 taxa. Am. J. Bot. 98: 704–730.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Swenson, N.G., Enquist, B.J., Pither, J., Thompson, J. and Zimmerman, J.K. 2006. The problem and promise of scale dependency in community phylogenetics. Ecology 87: 2418–2424.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Valiente-Banuet, A., Rumebe, A.V., Verdú, M. and Callaway, R.M. 2006. Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. P. Natl. Acad. Sci. USA 103: 16812–16817.CrossRefGoogle Scholar
  49. Webb, C.O., Ackerly, D.D., McPeek, M.A. and Donoghue, M.J. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33: 475–505.CrossRefGoogle Scholar
  50. Wiens, J.J. and Graham, C.H. 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Syst. 36: 519–539.CrossRefGoogle Scholar
  51. Willis, C.G., Halina, M., Lehman, C., Reich, P.B., Keen, A., McCarthy, S. and Cavender-Bares, J. 2010. Phylogenetic community structure in Minnesota oak savanna is infuenced by spatial extent and environmental variation. Ecography 33: 565–577 .Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • V. J. Debastiani
    • 1
    Email author
  • S. C. Muller
    • 2
  • J. M. Oliveira
    • 3
  • F. S. Rocha
    • 4
  • M. C. Sestren-Bastos
    • 5
  • L. D. S. Duarte
    • 1
  1. 1.Phylogenetic and Functional Ecology LabUniversidade Federal do Rio Grande do Sul.Porto AlegreBrazil
  2. 2.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Universidade do Vale do Rio dos SinosSão LeopoldoBrazil
  4. 4.Universidade Federal de Santa CatarinaFlorianópolisBrazil
  5. 5.Secretaria Municipal do Meio AmbientePorto AlegreBrazil

Personalised recommendations