Advertisement

Cereal Research Communications

, Volume 47, Issue 2, pp 334–344 | Cite as

Multi-environment Analysis of Grain Quality Traits in Recombinant Inbred Lines of a Biparental Cross in Bread Wheat (Triticum aestivum L.)

  • G. Krishnappa
  • A. K. Ahlawat
  • R. B. Shukla
  • S. K. Singh
  • S. K. Singh
  • A. M. SinghEmail author
  • G. P. Singh
Article

Abstract

A set of 286 recombinant inbred lines (RILs) along with the parents and a popular wheat variety in India were grown for two consecutive years at three locations belonging to the two major wheat growing zones of India and evaluated for four grain quality traits. Rare recombinants with high trait value appeared for protein content (PC), thousand-kernel weight (TKW), sedimentation value (SV), and kernel hardness (KH). The magnitude of environmental effects was more pronounced than genotypic effects and genotype-environment interaction (GEI). The cumulative contribution of environment and GEI components to the total variance was highest in the expression of PC followed by TKW, SV, and KH. The top five percent (14 RILs) of genotypes with high trait value were subjected to Eberhart and Russell (1966) (ER), genotype and genotype-environment (GGE) and additive main effects and multiplicative interaction (AMMI) stability models. Five RILs were identified as stable in all the three stability models. RIL61 with 38.8%, RIL101 with 8.9%, RIL226 with 26.1% superiority over check variety were the most stable genotypes in all the three stability models for PC, TKW and KH, respectively. RIL113 was found to be stable genotype in ER and GGE models, whereas, RIL231 was the most stable genotype in AMMI and GGE models in the expression of SV. These common stable genotypes with high trait value identified through ER, AMMI and GGE models could be potential donors in active breeding programs to develop high yielding wheat varieties with improved PC, TKW, SV and KH.

Keywords

wheat quality stability models GEI stable genotypes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2019_4702334_MOESM1_ESM.pdf (424 kb)
Supplementary material, approximately 434 KB.

References

  1. Allard, R.W. 1997. Genetic basis of the evolution of adaptedness in plants. In: Tigerstedt, P.M.A. (ed.) Adaptation in Plant Breeding. Developments in Plant Breeding, vol 4. Springer, Dordrecht. pp. 1–11.Google Scholar
  2. Aucamp, A., Labuschagne, M.T., Van Deventer, C.S. 2006. Stability analysis of kernel and milling characteristics in winter and facultative wheat. S. Afr. J. Plant Soil 23(3):152–156.CrossRefGoogle Scholar
  3. Axford, D.W.E., McDermott, E.E., Redman, D.G. 1979. Note on the sodium dodecyl sulfate test of bread making quality: Comparison with pelshenke and zeleny tests. Cereal Chemi. 56:582–584.Google Scholar
  4. Campbell, K.G., Bergman, C.J., Gualberto, D.G., Anderson, J.A., Giroux, M.J., Hareland, G., Fulcher, R.G., Sorells, M.E., Finney, P.L. 1999. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci. 39:1184–1195.CrossRefGoogle Scholar
  5. Castillo, D., Matus, I., Pozo, A.D., Madariaga, R., Mellado, M. 2012. Adaptability and genotype × environment interaction of spring wheat cultivars in Chile using regression analysis, AMMI, And SREG. Chilean J. Agr. Res. 72(2):167–174.CrossRefGoogle Scholar
  6. Eberhart, S.A., Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36–40.CrossRefGoogle Scholar
  7. Hatfield, J.L., Walthall, C.L. 2015. Meeting global food needs: realizing the potential via genetics × environment × management interactions. Agron. J. 107(4):1215–1226.CrossRefGoogle Scholar
  8. Hernandez-Espinos, N., Mondal, S., Autrique, E., Gonzalez-Santoyo, H., Crossa, J., Huerta-Espino, J., Singh, R.P., Guzman, C. 2018. Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Res. 215:104–112.CrossRefGoogle Scholar
  9. Khazratkulova, S., Sharma, R.C., Amanov, A., Ziyadullaev, Z., Amanovi, O., Alikulov, S., Ziyaev, Z., Muzafarova, D. 2015. Genotype × environment interaction and stability of grain yield and selected quality traits in winter wheat in Central Asia. Turk J. Agric. For. 39:920–929.CrossRefGoogle Scholar
  10. Kumar, A., Elias, M., Elias., Ghavami, F., Xu, X., Jain, S., Frank, A., Manthey, Mergoum, M., Mohammed, S., Alamri, Penny, M.A., Kianian, Shahryar, F., Kianian. 2013. A major QTL for gluten strength in durum wheat (Triticum turgidum L. var. durum). J. Cereal Sci. 57:21–29.CrossRefGoogle Scholar
  11. Mikulikova, D., Masar, S., Horvathova, V., Kraic, J. 2009. Stability of quality traits in winter wheat cultivars. Czech J. Food Sci. 27(6):403–417.CrossRefGoogle Scholar
  12. Muller, O., Krawinkel, M. 2005. Malnutrition and health in developing countries. CMAJ 3(3):279–286.CrossRefGoogle Scholar
  13. Mut, Z., Aydin, N., Bayramoglu, H.O., Ozcan, H. 2010. Stability of some quality traits in bread wheat (Triticum aestivum) genotypes. J. Env. Biol. 31:489–495.Google Scholar
  14. Peterson, C.J., Johnson, V.A., Mattern, P.J. 1986. Influence of cultivar and environment on mineral and protein concentrations of wheat flour, bran and grain. Cereal Chem. 63:118–186.Google Scholar
  15. Rajaram, S., Van Ginkel, M., Fischer, R.A. 1993. CIMMYT’s wheat breeding mega-environments (ME). In: Proc. of the 8th Int. Wheat Genetics Symp. Beijing. 20–25 July. Institute of Genetics, Chinese Academy of Sciences, Beijing, pp. 1101–1106.Google Scholar
  16. Reza, D., Reza, M., Bihamta., Najafian, G., Ebrahimi, A. 2013. Kernel quality association and path analysis in bread wheat. Int. J. Biol. 5(3):73–79.Google Scholar
  17. Rozbicki, J., Ceglinska, A., Gozdowski, D., Jakubczak, M., Cacak-Pietrzak, G., Madry, W., Golba, J., Piechocinski, M., Sobczynski, G., Studnicki, M., Drzazga, T. 2015. Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. J. Cereal Sci. 61:126–132.CrossRefGoogle Scholar
  18. Saleem, N., Ahmad, M., Wani, S.A., Vashnavi, R., Dar, Z.A. 2015. Genotype-environment interaction and stability analysis in Wheat (Triticum aestivum L.) for protein and gluten contents. Sci. Res. Essays 10(7):260–265.CrossRefGoogle Scholar
  19. Studnicki, M., Wijata, M., Sobczynski, G., Samborski, S., Gozdowski, D., Rozbicki, J. 2016. Effect of genotype, environment and crop management on yield and quality traits in spring wheat. J. Cereal Sci. 72:30–37.CrossRefGoogle Scholar
  20. Sun, X., Liu, T., Ning, T., Liu, K., Duan, X., Wang, X., Wang, Q., An, Y., Guan, X., Tian, J., Chen, J. 2018. Genetic dissection of wheat kernel hardness using conditional QTL mapping of kernel size and protein-related traits. Plant Mol. Biol. Rep. 36:1–12.CrossRefGoogle Scholar
  21. Surma, M., Adamski, T., Banaszak, Z., Kaczmarek, Z., Kuczynska, A., Majcher, M., Ługowska, B., Obuchowski, W., Salmanowicz, B., Krystkowiak, K. 2012. Effect of genotype, environment and their interaction on quality parameters of wheat breeding lines of diverse grain hardness. Plant Prod. Sci. 15(3):192–203.CrossRefGoogle Scholar
  22. Tiwari, C., Wallwork. H., Arun, B., Mishra, V.K., Velu, G., Stangoulis, J., Uttam, K., Hugh, W., Joshi, A.K. 2016. Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207:563–570.CrossRefGoogle Scholar
  23. Williams, R.M., O’Brien, L., Eagles, H.A., Solah, V.A., Jayasena, V. 2008. The influences of genotype, environment, and genotype × environment interaction on wheat quality. Aust. J. Agric. Res. 59:95–111.CrossRefGoogle Scholar
  24. Yong, Z., Zhonghu, H., Ye, G., Aimin, Z., Ginkel, M.V. 2004. Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China. Euphytica 139:75–83.CrossRefGoogle Scholar
  25. Zecevic, V., Boskovic, J., Knezevic, D., Micanovic, D., Milenkovic, S. 2013. Influence of cultivar and growing season on quality properties of winter wheat (Triticum aestivum L.). African J. Agri. Res. 8(21):2545–2550.Google Scholar
  26. Zhang, H., Chen, J., Li, R., Deng, Z., Zhang, K., Liu, B., Tian, J. 2016. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). Crop J. 4(3):220–228.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • G. Krishnappa
    • 1
    • 2
  • A. K. Ahlawat
    • 1
  • R. B. Shukla
    • 1
  • S. K. Singh
    • 1
    • 3
  • S. K. Singh
    • 1
  • A. M. Singh
    • 1
    Email author
  • G. P. Singh
    • 1
    • 2
  1. 1.Division of GeneticsICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.ICAR-Indian Institute of Wheat & Barley ResearchKarnal, HaryanaIndia
  3. 3.Department of Microbiology, Biochemistry & ImmunologyMorehouse School of MedicineGAUnited States of America

Personalised recommendations