Cereal Research Communications

, Volume 47, Issue 2, pp 277–291 | Cite as

Assessment of Fusarium Head Blight Resistance in Newly Developed Recombinant Inbred Lines of Wheat

  • C. C. Dweba
  • H. Shimelis
  • T. Tapera
  • T. J. TsiloEmail author


Fusarium head blight (FHB) is an important disease of wheat causing significant yield and quality losses globally. Breeding for host plant resistance is an economic approach to FHB control and management. The aim of this study was to identify potential sources of resistance from newly developed recombinant inbred lines (RILs) of wheat. A total of 778 RILs were developed through a bi-parental mating design followed by continuous selfing and selection. The RILs along with their eight parental lines (Baviaans, Buffels, Duzi, #910, #936, #937, #942 and #1036) and FHB resistant check cultivar ‘Sumai 3’ and susceptible check ‘SST 806’ were field evaluated across four environments in South Africa. Fusarium graminearum isolates were artificially inoculated to initiate infection and disease development. The percentage of wheat spikes showing FHB symptoms were scored. The research identified six percent of the RILs with disease resistance. Heritability for FHB resistance was the highest (64%) indicating the possibility of achieving higher selection gains for FHB resistance across the selected environments. The following five RILs were identified as potential sources of resistance: 681 (Buffels/1036-71), 134 (Duzi/910-8), 22 (Baviaans/910-22), 717 (Baviaans/937-8) and 133 (Duzi/910-7) with mean FHB scores of 6.8%, 7.8%, 9.5%, 9.8% and 10%, respectively. The selected lines expressed comparatively similar levels of resistance compared with that of Sumai 3. The identified RILs are useful genetic resources for resistance breeding against FHB disease of wheat. Since the presence of the F. graminearum is associated with deoxynivalenol (DON) accumulation, the DON levels amongst the selected lines should be determined to ensure the release of improved wheat cultivars with reduced levels of DON accumulation.


Fusarium head blight phenotype resistance reaction SSR markers wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2019_4702277_MOESM1_ESM.pdf (129 kb)
Supplementary material, approximately 132 KB.


  1. Anderson, J.A., Stack, R.W., Liu, S., Waldron, B.L., Fjeld, A.D., Coyne, C., Moreno-Sevilla, B., Fetch, J.M., Song, Q.J., Cregan, P.B., Frohberg, R.C. 2001. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet. 102(8):1164–1168.CrossRefGoogle Scholar
  2. Bai, G., Shaner, G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42:135–161.CrossRefGoogle Scholar
  3. Bekele, G., Singh, R.P., Alcala, M. 1988. Results of the first international scab resistance screening nursery (SRSN) 1985–86. CIMMYT, Mexico, D.F. Mexico.Google Scholar
  4. Bottalico, A., Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. In: Logrieco, A., Bailey, J.A., Corazza, L. and Cooke, B.M. (eds). Mycotoxins in plant disease. Springer, Dordrecht, The Netherlands. pp. 611–624.CrossRefGoogle Scholar
  5. Boutigny, A.L., Ward, T.J., Van Coller, G.J., Flett, B., Lamprecht, S.C., O’Donnell, K., Viljoen, A. 2011. Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet. Biol. 48(9):914–920.CrossRefGoogle Scholar
  6. Buerstmayr, H., Ban, T., Anderson, J.A. 2009. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1–26.CrossRefGoogle Scholar
  7. Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M., Ruckenbauer, P. 2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor. Appl. Genet. 104(1):84–91.Google Scholar
  8. Buerstmayr, H., Steiner, B., Hartl, L., Griesser, M., Angerer, N., Lengauer, D., Miedaner, T., Schneider, B., Lemmens, M. 2003. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. Genet. 107(3):503–508.CrossRefGoogle Scholar
  9. Dill-Macky, R. 2003. Inoculation methods and evaluation of Fusarium head blight resistance in wheat. In K.J. Leonard, W.R. Bushnell (eds). Fusarium Head Blight of wheat and barley. APS Press, St. Paul, Minnesota, USA. pp. 184–210.Google Scholar
  10. Engle, J.S., Lipps, P.E., Mills, D. 2003. Fusarium head blight severity scale for winter wheat. Published online by the Ohio State University, Bulletin AC-48-03, Extension Factsheet, Columbus, USA.Google Scholar
  11. Federer, W.T. 1961. Augmented designs with one-way elimination of heterogeneity. Biometrics 17:447–473.CrossRefGoogle Scholar
  12. Figlan, S., Baloyi, T.A., Hlongoane, T., Terefe, T.G., Shimelis, H., Tsilo, T.J. 2017. Adult plant resistance of selected Kenyan wheat cultivars to leaf rust and stem rust diseases. Cereal Res. Commun. 45:68–82.CrossRefGoogle Scholar
  13. Fuentes, R.G., Mickelson, H.R., Busch, R.H., Dill-Macky, R., Evans, C.K., Thompson, W.G., Wiersma, J.V., Xie, W., Dong, Y., Anderson, J.A. 2005. Resource allocation and cultivar stability in breeding for Fusarium head blight resistance in spring wheat. Crop Sci. 45:1965–1972.CrossRefGoogle Scholar
  14. Gelderblom, W.C.A., Shephard, G.S., Rheeder, J.P., Sathe, S.K., Ghiasi, A., Motarjemi, Y. 2014. Edible nuts, oilseeds and legumes. In: Motarjemi, Y., Lelieveld, H. (eds). Food safety management: a practical guide for the food industry. Elsevier. The Netherlands. pp. 301–324.CrossRefGoogle Scholar
  15. Goswami, R.S., Kistler, H.C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5(6):515–525.CrossRefGoogle Scholar
  16. He, X., Singh, P.K., Duveiller, E., Schlang, N., Dreisigacker, S., Singh, R.P. 2013. Identification and characterization of international Fusarium head blight screening nurseries of wheat at CIMMYT, Mexico. Eur. J. Plant Pathol. 136:123–134.CrossRefGoogle Scholar
  17. Lilleboe, D. 2011. Fusarium head blight in 2011: An overview. (Accessed 15 February 2016).
  18. Lin, F., Xue, S.L., Zhang, Z.Z., Zhang, C.Q., Kong, Z.X., Yao, G.Q., Tian, D.G., Zhu, H.L., Li, C.J., Cao, Y., Wei, J.B. 2006. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419× Wangshuibai population. II: Type I resistance. Theor. Appl. Genet. 112(3):528–535.CrossRefGoogle Scholar
  19. Lu, Q., Lillemo, M., Skinnes, H., He, X., Shi, J., Ji, F., Dong, Y., Bjørnstad, Å. 2013. Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor. Appl. Genet. 126(2):317–334.CrossRefGoogle Scholar
  20. Mesterházy, Á., Bartók, T., Mirocha, C.G., Komoroczy, R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding 11(2):97–110.CrossRefGoogle Scholar
  21. Mesterházy, Á., Buerstmayr, H., Tóth, B., Lehoczki-Krsjak, S., Szabó-Hevér, Á., Lemmens, M. 2007. An improved strategy for breeding FHB resistant wheat must include type I resistance. In Proc. of the 5th Canadian Workshop on Fusarium Head Blight. Delta Winnipeg, Canada. pp. 27–30.Google Scholar
  22. Misihairabgwi, J.M., Ezekiel, C.N., Sulyok, M., Shephard, G.S., Krska, R. 2017. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016). Crit. Rev. Food Sci. Nutr. pp. 1–16.Google Scholar
  23. Nganje, W.E., Bangsund, D.A., Leistritz, F.L., Wilson, W.W., Tiapo, N.M. 2004. Regional economic impacts of Fusarium head blight in wheat and barley. Rev. Agric. Econ. 26(3):332–347.CrossRefGoogle Scholar
  24. Niwa, S., Kubo, K., Lewis, J., Kikuchi, R., Alagu, M., Ban, T. 2014. Variations for Fusarium head blight resistance associated with genomic diversity in different sources of the resistant wheat cultivar ‘Sumai 3’. Breeding Sci. 64:90–96.CrossRefGoogle Scholar
  25. Osman, M., He, X., Singh, R.P., Duveiller, E., Lillemo, M., Pereyra, S.A., Westerdijk-Hoks, I., Kurushima, M., Yau, S., Benedettelli, S., Singh, P.K. 2015. Phenotypic and genotypic characterization of CIMMYT’s 15th International Fusarium head blight screening nursery of wheat. Euphytica 205:521–537.CrossRefGoogle Scholar
  26. Palacios, S.A., Erazo, J.G., Ciasca, B., Lattanzio, V.M., Reynoso, M.M., Farnochi, M.C., Torres, A.M. 2017a. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chem. 230:728–734.CrossRefGoogle Scholar
  27. Palacios, S.A., Merlera, G.G., Erazo, J., Reynoso, M.M., Farnochi, M.C., Torres, A.M. 2017b. Trichothecene genotype and genetic variability of Fusarium graminearum and F. cerealis isolated from durum wheat in Argentina. Eur. J. of Plant Pathol. 149(4):969–981.CrossRefGoogle Scholar
  28. Rieseberg, L.H., Widmer, A., Arntz, A.M., Burke, J.M. 2003. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos. T. Roy. Soc. B 358:1141–1147.CrossRefGoogle Scholar
  29. Rudd, J.C., Horsley, R.D., McKendry, A.L., Elias, E.M. 2001. Host plant resistance genes for Fusarium head blight: sources, mechanisms, and utility in conventional breeding systems. Crop Sci. 41:620–627.CrossRefGoogle Scholar
  30. Shah, D.A., De Wolf, E.D., Paul, P.A., Madden, L.V. 2014. Predicting Fusarium head blight epidemics with boosted regression trees. Phytopathology 104:702–714.CrossRefGoogle Scholar
  31. Shephard, G., Berthiller, F., Dorner, J., Krska, R., Lombaert, G., Malone, B., Maragos, C., Sabino, M., Solfrizzo, M., Trucksess, M., van Egmond, H. 2009. Developments in mycotoxin analysis: an update for 2007–2008. World Mycotoxin J. 2(1):3–21.CrossRefGoogle Scholar
  32. Singh, R.P., Rajaram, S. 2015. Breeding for disease resistance in wheat. (Accessed 01 September 2016).
  33. SAGL (South African Grain Laboratories). 2018. Accessed 12 August 2018.
  34. Schumann, G.L., D’Arcy, C.J. 2006. Essential plant pathology. APS Press Minnesota, USA, pp. 10–12.Google Scholar
  35. Spanic, V., Lemmens, M., Drezner, G. 2013. Variability in components of Fusarium head blight resistance among wheat genotypes. Cereal Res. Commun. 41(3):420–430.CrossRefGoogle Scholar
  36. Szabó-Hevér, A., Lehoczki-Krsjak, S., Varga, M., Purnhauser, L., Pauk, J., Lantos, C., Mesterházy, A. 2014. Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population. Euphytica 200:9–26.CrossRefGoogle Scholar
  37. Tunali, B., Obanor, F., Erginbaş, G., Westecott, R.A., Nicol, J., Chakraborty, S. 2012. Fitness of three Fusarium pathogens of wheat. FEMS Microbiol. Ecol. 81(3):596–609.CrossRefGoogle Scholar
  38. Varga, E., Wiesenberger, G., Hametner, C., Ward, T.J., Dong, Y., Schöfbeck, D., McCormick, S., Broz, K., Stückler, R., Schuhmacher, R., Krska, R. 2015. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ. Microbiol. 17(8):2588–2600.CrossRefGoogle Scholar
  39. Wilde, F., Korzun, V., Ebmeyer, E., Geiger, H.H., Miedaner, T. 2007. Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol. Breeding 19(4):357–370.CrossRefGoogle Scholar
  40. Yi, X., Cheng, J., Jiang, Z., Hu, W., Bie, T., Gao, D., Li, D., Wu, R., Li, Y., Chen, S., Cheng, X. 2018. Genetic analysis of fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front. Plant Sci. 9:573.CrossRefGoogle Scholar
  41. Zain, M.E. 2012. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 15:129–144.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • C. C. Dweba
    • 1
    • 2
  • H. Shimelis
    • 1
  • T. Tapera
    • 1
  • T. J. Tsilo
    • 2
    Email author
  1. 1.University of KwaZulu-Natal, School of Agricultural, Earth and Environmental Sciences, African Centre for Crop ImprovementScottsvilleSouth Africa
  2. 2.Agricultural Research Council-Small Grain InstituteBethlehemSouth Africa

Personalised recommendations