Advertisement

Cereal Research Communications

, Volume 47, Issue 2, pp 239–249 | Cite as

Expression of Wheat Gibberellins 2-oxidase Gene Induced Dwarf or Semi-dwarf Phenotype in Rice

  • S. Tang
  • L. Li
  • Q. Y. Zhou
  • W. Z. Liu
  • H. X. Zhang
  • W. Z. Chen
  • Y. F. DingEmail author
Article

Abstract

Gibberellins (GAs) are a class of plant hormones that play important roles in diverse aspects during plant growth and development. A series of GA synthesis and metabolism genes have been reported or proved to have essential functions in different plant species, while a small number of GA 2-oxidase genes have been cloned or reported in wheat. Previous studies have provided some important findings on the process of GA biosynthesis and the enzymes involved in its related pathways. These may facilitate understanding of the complicated process underlying GA synthesis and metabolism in wheat. In this study, GA 2-oxidase genes TaGA2ox1-1, TaGA2ox1-2, TaGA2ox1-3, TaGA2ox1-4, TaGA2ox1-5, and TaGA2ox1-6 were identified and further overexpressed in rice plants to investigate their functions in GA biosynthesis and signaling pathway. Results showed overexpression of GA 2-oxidase genes in rice disrupted the GA metabolic pathways and induced catalytic responses and regulated other GA biosynthesis and signaling pathway genes, which further leading to GA signaling disorders and diversity in phenotypic changes in rice plants.

Keywords

gibberellins gene expression plant growth rice wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2019_4702239_MOESM1_ESM.pdf (509 kb)
Supplementary material, approximately 521 KB.

References

  1. Appleford, N.E., Wilkinson, M.D., Ma, Q., Evans, D.J., Stone, M.C., Pearce, S.P., Lenton, J.R. et al. 2007. Decreased shoot stature and grain alpha-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat. J. Exp. Bot. 58:3213–3226.CrossRefGoogle Scholar
  2. Binenbaum, J., Weinstain, R., Shani, E. et al. 2018. Gibberellin localization and transport in plants. Trends Plant Sci. 23:410–421.CrossRefGoogle Scholar
  3. Chen, J.J., Xie, J.H., Duan, Y.J., Hu, H.G., Hu, Y.L., Li, W.M. 2016. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant. BMC Plant Biol. 16:123.CrossRefGoogle Scholar
  4. Ford, B., Foo, E., Sharwood, R.E., Karafiatova, M., Vrána, J., MacMillan, C., Spielmeyer, W. et al. 2018. Rht18 Semi-dwarfism in wheat is due to increased expression of GA 2-oxidaseA9 and lower GA content. Plant Physiol. 177:168–180.PubMedPubMedCentralGoogle Scholar
  5. Hedden, P., Sponsel, V. 2015. A century of gibberellin research. J. Plant Growth Regul. 34:740–760.CrossRefGoogle Scholar
  6. Hiei, Y., Komari, T. 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3:824–834.CrossRefGoogle Scholar
  7. Huang, Y., Yang, W., Pei, Z., Guo, X., Liu, D., Sun, J., Zhang, A. 2012. The genes for gibberellin biosynthesis in wheat. Funct. Integr. Genomics 12:199–206.CrossRefGoogle Scholar
  8. Kaneko, M., Itoh, H., Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. 2003. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 35:104–115.CrossRefGoogle Scholar
  9. Lo, S.F., Yang, S.Y., Chen, K.T., Hsing, Y.I., Zeevaart, J.A., Chen, L.J., Yu, S.M. 2008. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell. 20:2603–2618.CrossRefGoogle Scholar
  10. Pearce, S., Huttly, A.K., Prosser, I.M., Li, Y.D., Vaughan, S.P., Gallova, B., Phillips, A.L. et al. 2015. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol. 15:130.CrossRefGoogle Scholar
  11. Regnault, T., Davière, J.-M., Wild, M., Sakvarelidze-Achard, L., Heintz, D., Carrera Bergua, E., Achard, P. et al. 2015. The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nat. Plants. 1:15073.CrossRefGoogle Scholar
  12. Sakamoto, T., Morinaka, Y., Ishiyama, K., Kobayashi, M., Itoh, H., Kayano, T., Tanaka, H. et al. 2003. Genetic manipulation of gibberellin metabolism in transgenic rice. Nat. Biotechnol. 21:909–913.CrossRefGoogle Scholar
  13. Saville, R.J., Gosman, N., Burt, C.J., Makepeace, J., Steed, A., Corbitt, M., Nicholson, P. et al. 2012. The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J. Exp. Bot. 63:1271–1283.CrossRefGoogle Scholar
  14. Schwechheimer, C. 2008. Understanding gibberellic acid signaling–are we there yet? Curr. Opin. Plant Biol. 11:9–15.CrossRefGoogle Scholar
  15. Wu, Y., Wang, Y., Mi, X.F., Shan, J.X., Li, X.M., Xu, J.L., Lin, H.X. 2016. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet. 12:e1006386Google Scholar
  16. Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59:225–251.CrossRefGoogle Scholar
  17. Zhang, Y., Ni, Z., Yao, Y., Nie, X., Sun, Q. 2007. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet. 8:1–10.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • S. Tang
    • 1
    • 2
  • L. Li
    • 3
  • Q. Y. Zhou
    • 1
  • W. Z. Liu
    • 1
  • H. X. Zhang
    • 1
  • W. Z. Chen
    • 1
  • Y. F. Ding
    • 1
    • 2
    Email author
  1. 1.College of AgronomyNanjing Agricultural UniversityNanjingPR China
  2. 2.Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjingPR China
  3. 3.Editorial DepartmentNanjing Agricultural UniversityNanjingPR China

Personalised recommendations