Cereal Research Communications

, Volume 46, Issue 2, pp 344–354 | Cite as

Genetic Characterisation and Cytological Identification of a Male Sterile Mutant in Maize (Zea mays L.)

  • G. C. Zhou
  • H. C. Shi
  • X. J. Yu
  • J. C. Yuan
  • Q. Guo
  • C. Y. Zhao
  • Q. Sun
  • Y. P. KeEmail author


Male sterile mutants play an important role in the utilisation of crop heterosis. Male sterile plants were found in S5 generations of maize hybrid ZH2, through continuous sib-mating by using the fertile plants in the same population, we obtained a male sterile sibling population K932MS including sterile plants K932S and a fertile plant K932F. The objective of this study was to clarify the genetic characterisation and abortion characteristics by nucleus and cytoplasm effect analyses, cytoplasm grouping, and cytological observation. The results showed that no difference was found between K932S and K932F in the vegetative growth stage, but K932S had no emerging anther or pollen grains. The segregation ratio of fertile plants to sterile plants was 1:1 in the sibling progenies, while it was 3:1 in self-crossing progenies of K932F. The sterility of K932S could be restored among reciprocal progenies when seven normal inbred lines were used as females respectively. The fertility expression of K932S crossed with 30 testers would be changed in different test-crosses and some back-cross progenies. The C-type restorer Zifeng-1 (Rf4Rf4) was able to restore the fertility of K932S, and the specific PCR amplification bands of K932MS were consistent with CMS-CMo17. The anther of K932S began abortion at dyad with its tapetum expanded radically and vacuolated: this induced abnormality in the shapes of both dyads and tetrads. The microspore could not develop normally, and then it collapsed and gradually disappeared. Hence, K932MS is a C-type cytoplasmic male sterile mutant with a pollen-free, stable inheritance: it has potential application value for further research.


maize male sterile genetic analysis cytoplasmic identification tapetum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4602344_MOESM1_ESM.pdf (258 kb)
Supplementary material, approximately 265 KB.


  1. Allen, J.O., Fauron, C.M., Minx, P., Roark, L., Oddiraju, S., Lin, G.N., Meyer, L., Sun, H., Kim, K., Wang, C.Y., Du, F.Y., Xu, D., Gibson, M., Cifrese, J., Clifton, S.W., Newton, K.J. 2007. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics, 177:1173–1192.CrossRefGoogle Scholar
  2. Alverson, A.J., Zhuo, S., Rice, D.W., Sloan, D.B., Palmer, J.D. 2011. The mitochondrial genome of the legume vigna radiata and the analysis of recombination across short mitochondrial repeats. Plos One, 6:e16404.CrossRefGoogle Scholar
  3. Beckett, J.B. 1971. Classification of male sterile cytoplasms in maize (Zea mays L). Crop Sci. 11:724–727.Google Scholar
  4. Chen, L.T., Liu, Y.G. 2014. Male sterility and fertility restoration in crops. Annu. Rev. of Plant Biol. 65:579–606.CrossRefGoogle Scholar
  5. Colhoun, C.W., Steer, M.W. 1981. Microsporogenesis and the mechanism of cytoplasmic male sterility in maize. Ann. Bot. 48:417–424.CrossRefGoogle Scholar
  6. Cui, X.Q., Wise, R.P., Schnable, P.S. 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science. 272:1334–1336.CrossRefGoogle Scholar
  7. Dewey, R.E., Levings, C.S. 1987. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc. Nat. Acad. Sci. USA. 84:5374–5378.CrossRefGoogle Scholar
  8. Ding, J.H., Lu, Q., Ouyang, Y.D., Mao, H.L., Zhang, P.B., Yao, J.L., Xu, C.G., Li. X.H., Xiao, J.H., Zhang. Q.F. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Nat. Acad. Sci. USA 109:2654–2659.CrossRefGoogle Scholar
  9. Duvick, D.N. 1958. Yields and other agronomic characteristics of cytoplasmically pollen sterile corn hybrids, compared to their normal counterparts1. Agron. J. 50:121–125.CrossRefGoogle Scholar
  10. Duvick, D.N. 1965. Cytoplasmic pollen sterility in corn. Adv. in Genet. 13:1–56.CrossRefGoogle Scholar
  11. Eyster, L.A. 1921. Heritable characters of maize: VII. male sterile. J. Hered. 12:138–141.CrossRefGoogle Scholar
  12. Gu, J.N., Zhu, J., Yu, Y., Teng, X.D., Lou, Y., Xu, X.F., Liu, J.L., Yang, Z.N. 2014. Dyt1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J. 80:1005–1013.CrossRefGoogle Scholar
  13. Hu, J., Huang, W.C., Huang, Q., Qin, X.J., Yu, C.C., Wang, L.L., Li, S.Q., Zhu, R.S., Zhu, Y.G. 2014. Mitochondria and cytoplasmic male sterility in plants. Mitochondrion. 19:282–288.CrossRefGoogle Scholar
  14. Hu, Y.M., Tang, J.H., Yang, H., Xie, H.L., Lu, X.M., Niu, J.H., Chen, W.C. 2006. Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for Cms-C in maize (Zea mays L.). Theor. Appl. Genet. 113:357–360.CrossRefGoogle Scholar
  15. Kamps, T.L., Chase, C.D. 1997. RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theor. Appl. Genet. 95:525–531.CrossRefGoogle Scholar
  16. Kaul, M.L.H. 1988. Male Sterility in Higher Plants. Springer. Berlin Heidelberg.CrossRefGoogle Scholar
  17. Lee, S.L.J., Gracen, V.E., Earle, E.D. 1979. The cytology of pollen abortion in C cytoplasmic male-sterile corn anther. Am. J. of Bot. 66:656–667.CrossRefGoogle Scholar
  18. Levings, C.S. 1990. The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science, 250:942–947.CrossRefGoogle Scholar
  19. Li, L., Li, Y.X., Song, S.F., Deng, H.F., Li, N., Fu, X.Q., Chen, G.H., Yuan, L.P. 2015. An anther development f-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta. 241:157–166.CrossRefGoogle Scholar
  20. Liu, Y.M., Zhao Z.F., Lu Y.L., Li. C., Wang, J., Dong, B.X., Liang, B., Qiu, T., Zeng, W.B., Cao, M.J. 2016. A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize (Zea mays L.). PeerJ. 4:e2719; DOI 10.7717/peerj.2719.CrossRefGoogle Scholar
  21. Liu, Z.Y., Peter, S.O., Long, M.H., Weingartner, U., Stamp, P., Kaeser, O. 2002. A PCR assay for rapid discrimination of cytoplasm types in maize. Crop Science. 42:566–569.CrossRefGoogle Scholar
  22. Luan, J., Liu, T.R., Luo, W.Q., Liu, W., Peng, M.Q., Li, W.J., Dai, X.J., Liang, M.Z., Chen, L.B. 2013. Mitochondrial DNA genetic polymorphism in thirteen rice cytoplasmic male sterile lines. Plant Cell Rep. 32:545–554.CrossRefGoogle Scholar
  23. Ma, H. 2005. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Plant Biol. 56:393–434.CrossRefGoogle Scholar
  24. Moon, J., Skibbe, D., Timofejeva, L., Wang, C.J., Kelliher, T., Kremling, K., Walbot, V., Cande, W.Z. 2013. Regulation of cell divisions and differentiation by male sterility32 is required for anther development in maize. Plant J. for Cell and Mol. Biol. 76:592–602.CrossRefGoogle Scholar
  25. Nan, G.L., Zhai, J., Arikit, S., Morrow, D., Fernandes, J., Mai, L., Nguyen, N., Meyers, B.C., Walbot, V. 2017. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development. 144:163–172.CrossRefGoogle Scholar
  26. Qin, T.C., Xu, M.L., Dun, D.X. 1990. Cytoplasmic male-sterility: identification of the number of the restorer genes. Maize Genet. Coop. News Let. 64:124.Google Scholar
  27. Ren, R.H., Nagel, B.A., Kumpatla, S.P., Zheng, P.Z., Cutter, G.L., Greene, T.W., Thompson, S.A. 2012. Maize cytoplasmic male sterility (cms) c-type restorer RF4 gene, molecular markers and their use. US Patent 20120090047, April 12. United States Patent and Trademark Office, United States. Available at US20120090047.Google Scholar
  28. Rhoades, M.M. 1933. Cytoplasmic inheritance of male sterility in Zea mays. J. of Genet. 73:71–93.CrossRefGoogle Scholar
  29. Sisco, P.H. 1991. Duplications complicate genetic mapping of Rf4, a restorer gene for CMS-C cytoplasmic male sterility in corn. Crop Sci. 31:1263–1266.CrossRefGoogle Scholar
  30. Skibbe, D.S., Schnable, P.S. 2005. Male sterility in maize. Maydica. 50:367–376.Google Scholar
  31. Slischuk, G.I., Kozhukhova, N.E., Sivolap, Y.M. 2011. Molecular genetic analysis of maize mitochondrial regions associated with CMS. Cytol. and Genet. 45:143–147.CrossRefGoogle Scholar
  32. Tang, J.H., Fu, Z.Y., Hu, Y.M., Li, J.S., Sun, L.L., Ji, H.Q. 2006. Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theor. Appl. Genet. 113:11–15.CrossRefGoogle Scholar
  33. Warmke, H.E., Lee, S.J. 1978. Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Science. 200:561–563.CrossRefGoogle Scholar
  34. Wilson, Z.A., Zhang, D.B. 2009. From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60:1479–1492.CrossRefGoogle Scholar
  35. Wise, R.P., Bronson, C.R., Schnable, P.S., Horner, H.T. 1999. The genetics, pathology, and molecular biology of T-cytoplasm male sterility in maize. Adv. in Agron. 65:79–83.CrossRefGoogle Scholar
  36. Wu, Y.Z., Fox, T.W., Trimnell, M.R., Wang, L.J., Xu, R.J., Cigan, A.M., Huffman, G.A., Garnaat, C.W., Hershey, H., Albertsen, M.C. 2015. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol. J. 14:1046–1054.CrossRefGoogle Scholar
  37. Zabala, G., Gabaylaughnan, S., Laughnan, J.R. 1997. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genet. 147:847–60.Google Scholar
  38. Zhao, H.X., Li, Z.J., Hu, S.W., Sun, G.L., Chang, J.J., Zhang, Z.H. 2010. Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay. Theoretical and Applied Genetics. 121:643–650.CrossRefGoogle Scholar
  39. Zheng, Y.L. 1982. Study on the mechanism of the fertility about several types of cytoplasmic male sterility in maize (Zea mays, L.). Journal of Huazhong Agricultural College. 1:44–68. (in Chinese with English abstract).Google Scholar
  40. Zhou, H., Liu, Q.J., Li, J., Jiang, D.G., Zhou, L.Y., Wu, P., Lu, S., Li, F., Zhu, L.Y., Liu, Z.L., Chen, L.T., Liu, Y.G., Zhang, C.X. 2012. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research. 22:649–660.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • G. C. Zhou
    • 1
  • H. C. Shi
    • 1
  • X. J. Yu
    • 1
  • J. C. Yuan
    • 1
  • Q. Guo
    • 1
  • C. Y. Zhao
    • 1
  • Q. Sun
    • 3
  • Y. P. Ke
    • 1
    • 2
    Email author
  1. 1.College of AgronomySichuan Agricultural UniversityChengdu, SichuanChina
  2. 2.Sichuan Nongda Zhenghong Bio. Co., LtdChengdu, SichuanChina
  3. 3.College of Life Sciences, Key laboratory of Bio-resources and Eco-environment of the Ministry of EducationSichuan UniversityChengdu, SichuanChina

Personalised recommendations