Genetic Characterisation and Cytological Identification of a Male Sterile Mutant in Maize (Zea mays L.)

Abstract

Male sterile mutants play an important role in the utilisation of crop heterosis. Male sterile plants were found in S5 generations of maize hybrid ZH2, through continuous sib-mating by using the fertile plants in the same population, we obtained a male sterile sibling population K932MS including sterile plants K932S and a fertile plant K932F. The objective of this study was to clarify the genetic characterisation and abortion characteristics by nucleus and cytoplasm effect analyses, cytoplasm grouping, and cytological observation. The results showed that no difference was found between K932S and K932F in the vegetative growth stage, but K932S had no emerging anther or pollen grains. The segregation ratio of fertile plants to sterile plants was 1:1 in the sibling progenies, while it was 3:1 in self-crossing progenies of K932F. The sterility of K932S could be restored among reciprocal progenies when seven normal inbred lines were used as females respectively. The fertility expression of K932S crossed with 30 testers would be changed in different test-crosses and some back-cross progenies. The C-type restorer Zifeng-1 (Rf4Rf4) was able to restore the fertility of K932S, and the specific PCR amplification bands of K932MS were consistent with CMS-CMo17. The anther of K932S began abortion at dyad with its tapetum expanded radically and vacuolated: this induced abnormality in the shapes of both dyads and tetrads. The microspore could not develop normally, and then it collapsed and gradually disappeared. Hence, K932MS is a C-type cytoplasmic male sterile mutant with a pollen-free, stable inheritance: it has potential application value for further research.

References

  1. Allen, J.O., Fauron, C.M., Minx, P., Roark, L., Oddiraju, S., Lin, G.N., Meyer, L., Sun, H., Kim, K., Wang, C.Y., Du, F.Y., Xu, D., Gibson, M., Cifrese, J., Clifton, S.W., Newton, K.J. 2007. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics, 177:1173–1192.

    CAS  Article  Google Scholar 

  2. Alverson, A.J., Zhuo, S., Rice, D.W., Sloan, D.B., Palmer, J.D. 2011. The mitochondrial genome of the legume vigna radiata and the analysis of recombination across short mitochondrial repeats. Plos One, 6:e16404.

    CAS  Article  Google Scholar 

  3. Beckett, J.B. 1971. Classification of male sterile cytoplasms in maize (Zea mays L). Crop Sci. 11:724–727.

    Google Scholar 

  4. Chen, L.T., Liu, Y.G. 2014. Male sterility and fertility restoration in crops. Annu. Rev. of Plant Biol. 65:579–606.

    CAS  Article  Google Scholar 

  5. Colhoun, C.W., Steer, M.W. 1981. Microsporogenesis and the mechanism of cytoplasmic male sterility in maize. Ann. Bot. 48:417–424.

    Article  Google Scholar 

  6. Cui, X.Q., Wise, R.P., Schnable, P.S. 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science. 272:1334–1336.

    CAS  Article  Google Scholar 

  7. Dewey, R.E., Levings, C.S. 1987. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc. Nat. Acad. Sci. USA. 84:5374–5378.

    CAS  Article  Google Scholar 

  8. Ding, J.H., Lu, Q., Ouyang, Y.D., Mao, H.L., Zhang, P.B., Yao, J.L., Xu, C.G., Li. X.H., Xiao, J.H., Zhang. Q.F. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Nat. Acad. Sci. USA 109:2654–2659.

    CAS  Article  Google Scholar 

  9. Duvick, D.N. 1958. Yields and other agronomic characteristics of cytoplasmically pollen sterile corn hybrids, compared to their normal counterparts1. Agron. J. 50:121–125.

    Article  Google Scholar 

  10. Duvick, D.N. 1965. Cytoplasmic pollen sterility in corn. Adv. in Genet. 13:1–56.

    Article  Google Scholar 

  11. Eyster, L.A. 1921. Heritable characters of maize: VII. male sterile. J. Hered. 12:138–141.

    Article  Google Scholar 

  12. Gu, J.N., Zhu, J., Yu, Y., Teng, X.D., Lou, Y., Xu, X.F., Liu, J.L., Yang, Z.N. 2014. Dyt1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J. 80:1005–1013.

    CAS  Article  Google Scholar 

  13. Hu, J., Huang, W.C., Huang, Q., Qin, X.J., Yu, C.C., Wang, L.L., Li, S.Q., Zhu, R.S., Zhu, Y.G. 2014. Mitochondria and cytoplasmic male sterility in plants. Mitochondrion. 19:282–288.

    CAS  Article  Google Scholar 

  14. Hu, Y.M., Tang, J.H., Yang, H., Xie, H.L., Lu, X.M., Niu, J.H., Chen, W.C. 2006. Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for Cms-C in maize (Zea mays L.). Theor. Appl. Genet. 113:357–360.

    CAS  Article  Google Scholar 

  15. Kamps, T.L., Chase, C.D. 1997. RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theor. Appl. Genet. 95:525–531.

    CAS  Article  Google Scholar 

  16. Kaul, M.L.H. 1988. Male Sterility in Higher Plants. Springer. Berlin Heidelberg.

    Book  Google Scholar 

  17. Lee, S.L.J., Gracen, V.E., Earle, E.D. 1979. The cytology of pollen abortion in C cytoplasmic male-sterile corn anther. Am. J. of Bot. 66:656–667.

    Article  Google Scholar 

  18. Levings, C.S. 1990. The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science, 250:942–947.

    CAS  Article  Google Scholar 

  19. Li, L., Li, Y.X., Song, S.F., Deng, H.F., Li, N., Fu, X.Q., Chen, G.H., Yuan, L.P. 2015. An anther development f-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta. 241:157–166.

    CAS  Article  Google Scholar 

  20. Liu, Y.M., Zhao Z.F., Lu Y.L., Li. C., Wang, J., Dong, B.X., Liang, B., Qiu, T., Zeng, W.B., Cao, M.J. 2016. A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize (Zea mays L.). PeerJ. 4:e2719; DOI 10.7717/peerj.2719.

    Article  Google Scholar 

  21. Liu, Z.Y., Peter, S.O., Long, M.H., Weingartner, U., Stamp, P., Kaeser, O. 2002. A PCR assay for rapid discrimination of cytoplasm types in maize. Crop Science. 42:566–569.

    CAS  Article  Google Scholar 

  22. Luan, J., Liu, T.R., Luo, W.Q., Liu, W., Peng, M.Q., Li, W.J., Dai, X.J., Liang, M.Z., Chen, L.B. 2013. Mitochondrial DNA genetic polymorphism in thirteen rice cytoplasmic male sterile lines. Plant Cell Rep. 32:545–554.

    CAS  Article  Google Scholar 

  23. Ma, H. 2005. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Plant Biol. 56:393–434.

    CAS  Article  Google Scholar 

  24. Moon, J., Skibbe, D., Timofejeva, L., Wang, C.J., Kelliher, T., Kremling, K., Walbot, V., Cande, W.Z. 2013. Regulation of cell divisions and differentiation by male sterility32 is required for anther development in maize. Plant J. for Cell and Mol. Biol. 76:592–602.

    CAS  Article  Google Scholar 

  25. Nan, G.L., Zhai, J., Arikit, S., Morrow, D., Fernandes, J., Mai, L., Nguyen, N., Meyers, B.C., Walbot, V. 2017. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development. 144:163–172.

    CAS  Article  Google Scholar 

  26. Qin, T.C., Xu, M.L., Dun, D.X. 1990. Cytoplasmic male-sterility: identification of the number of the restorer genes. Maize Genet. Coop. News Let. 64:124.

    Google Scholar 

  27. Ren, R.H., Nagel, B.A., Kumpatla, S.P., Zheng, P.Z., Cutter, G.L., Greene, T.W., Thompson, S.A. 2012. Maize cytoplasmic male sterility (cms) c-type restorer RF4 gene, molecular markers and their use. US Patent 20120090047, April 12. United States Patent and Trademark Office, United States. Available at https://www.google.com/patents/ US20120090047.

  28. Rhoades, M.M. 1933. Cytoplasmic inheritance of male sterility in Zea mays. J. of Genet. 73:71–93.

    Article  Google Scholar 

  29. Sisco, P.H. 1991. Duplications complicate genetic mapping of Rf4, a restorer gene for CMS-C cytoplasmic male sterility in corn. Crop Sci. 31:1263–1266.

    CAS  Article  Google Scholar 

  30. Skibbe, D.S., Schnable, P.S. 2005. Male sterility in maize. Maydica. 50:367–376.

    Google Scholar 

  31. Slischuk, G.I., Kozhukhova, N.E., Sivolap, Y.M. 2011. Molecular genetic analysis of maize mitochondrial regions associated with CMS. Cytol. and Genet. 45:143–147.

    Article  Google Scholar 

  32. Tang, J.H., Fu, Z.Y., Hu, Y.M., Li, J.S., Sun, L.L., Ji, H.Q. 2006. Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theor. Appl. Genet. 113:11–15.

    CAS  Article  Google Scholar 

  33. Warmke, H.E., Lee, S.J. 1978. Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Science. 200:561–563.

    CAS  Article  Google Scholar 

  34. Wilson, Z.A., Zhang, D.B. 2009. From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60:1479–1492.

    CAS  Article  Google Scholar 

  35. Wise, R.P., Bronson, C.R., Schnable, P.S., Horner, H.T. 1999. The genetics, pathology, and molecular biology of T-cytoplasm male sterility in maize. Adv. in Agron. 65:79–83.

    CAS  Article  Google Scholar 

  36. Wu, Y.Z., Fox, T.W., Trimnell, M.R., Wang, L.J., Xu, R.J., Cigan, A.M., Huffman, G.A., Garnaat, C.W., Hershey, H., Albertsen, M.C. 2015. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol. J. 14:1046–1054.

    Article  Google Scholar 

  37. Zabala, G., Gabaylaughnan, S., Laughnan, J.R. 1997. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genet. 147:847–60.

    CAS  Google Scholar 

  38. Zhao, H.X., Li, Z.J., Hu, S.W., Sun, G.L., Chang, J.J., Zhang, Z.H. 2010. Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay. Theoretical and Applied Genetics. 121:643–650.

    CAS  Article  Google Scholar 

  39. Zheng, Y.L. 1982. Study on the mechanism of the fertility about several types of cytoplasmic male sterility in maize (Zea mays, L.). Journal of Huazhong Agricultural College. 1:44–68. (in Chinese with English abstract).

    Google Scholar 

  40. Zhou, H., Liu, Q.J., Li, J., Jiang, D.G., Zhou, L.Y., Wu, P., Lu, S., Li, F., Zhu, L.Y., Liu, Z.L., Chen, L.T., Liu, Y.G., Zhang, C.X. 2012. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research. 22:649–660.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. P. Ke.

Additional information

Communicated by M. Molnár-Láng

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, G.C., Shi, H.C., Yu, X.J. et al. Genetic Characterisation and Cytological Identification of a Male Sterile Mutant in Maize (Zea mays L.). CEREAL RESEARCH COMMUNICATIONS 46, 344–354 (2018). https://doi.org/10.1556/0806.46.2018.15

Download citation

Keywords

  • maize
  • male sterile
  • genetic analysis
  • cytoplasmic identification
  • tapetum