Advertisement

Cereal Research Communications

, Volume 46, Issue 2, pp 263–274 | Cite as

Characterization of a Selenium-resistance-enhancing Homocysteine S-methyltransferase from Aegilops tauschii

  • L. J. Wu
  • Y. Shang
  • T. Liu
  • W. J. Chen
  • B. L. Liu
  • L. Q. Zhang
  • D. C. Liu
  • B. ZhangEmail author
  • H. G. ZhangEmail author
Article

Abstract

In this study, the cDNA of homocysteine S-methyltransferase was isolated from Aegilops tauschii Coss., with the gene accordingly designated as AetHMT1. Similar to other methyltransferases, AetHMT1 contains a GGCCR consensus sequence for a possible zinc-binding motif near the C-terminal and a conserved cysteine residue upstream of the zinc-binding motif. Analysis of AetHMT1 uncovered no obvious chloroplast or mitochondrial targeting sequences. We functionally expressed AetHMT1 in Escherichia coli and confirmed its biological activity, as evidenced by a positive HMT enzyme activity of 164.516 ± 17.378 nmol min-1 mg-1 protein when catalyzing the transformation of L-homocysteine. Compared with the bacterium containing the empty vector, E. coli harboring the recombinant AetHMT1 plasmid showed much higher tolerance to selenate and selenite. AetHMT1 transcript amounts in different organs were increased by Na2SeO4 treatment, with roots accumulating higher amounts than stems, old leaves and new leaves. We have therefore successfully isolated HMT1 from Ae. tauschii and characterized the biochemical and physiological functions of the corresponding protein.

Keywords

homocysteine S-methyltransferase Aegilops tauschii selenium 

Abbreviations

HMT

homocysteine S-methyltransferase

Bp

base pair

RT-PCR

reverse transcription polymerase chain reaction

SMT

selenocysteine methyltransferase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4602263_MOESM1_ESM.pdf (814 kb)
Supplementary material, approximately 833 KB.

References

  1. Ari, Ş., Çakır, Ö., Turgut-Kara, N. 2010. Selenium tolerance in Astragalus chrysochlorus: identification of a cDNA fragment encoding a putative Selenocysteine methyltransferase. Acta Physiol. Plant. 32:1085–1092.CrossRefGoogle Scholar
  2. Ausubel, F.M., Glazebrook, J., Greenberg, J., Katagiri, F., Mindrinos, M., Yu, G.L. 1993. Analysis of the Arabidopsis Defense Response to Pseudomonas Pathogens. J. Cell Biol. 14:393–403.Google Scholar
  3. Bourgis, F., Roje. S., Nuccio, M.L., Fisher, D.B., Tarczynski, M.C., Li, C.J., Herschbach, C., Rennenberg, H., Pimenta, M.J., Shen, T.L., Gage, D.A., Hanson, A.D. 1999. S-methylmethionin plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1497.CrossRefGoogle Scholar
  4. Bradford, M.M. 1976. Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal. Biochem. 72:248–254.CrossRefGoogle Scholar
  5. Brown, T. A., Shrift, A. 1982. Selenium: Toxicity and Tolerance in Higher Plants. Biol. Rev. 57:59–84.CrossRefGoogle Scholar
  6. Chen, X., Yang, G., Chen, J., Chen, X., Wen, Z., Ge, K. 1980. Studies on the relations of selenium and Keshan disease. Biol. Trace Elem. Res. 2:91–107.CrossRefGoogle Scholar
  7. Ebert, R., Jakob, F. 2007. Selenium deficiency as a putative risk factor for osteoporosis. International Congress Series 1297:158–164.CrossRefGoogle Scholar
  8. Guo, Z.F., Zhang, Z.B., Xu P., Guo, Y.N. 2013. Analysis of Nutrient Composition of Purple Wheat, Cereal Res. Commun. 41:293–303.Google Scholar
  9. Hartikainen, H. 2005. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Bio. 18:309–318.CrossRefGoogle Scholar
  10. Hu, B. L., Huang, D.R., Xiao Y.Q., Fan Y.Y., Chen D.Z., Zhuang J.Y. 2016. Mapping QTLs for Mineral Element Contents in Brown and Milled Rice Using an Oryza sativa ×O. rufpogon Backcross Inbred Line Population. Cereal Res. Commun. 44:57–68.CrossRefGoogle Scholar
  11. Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K.F., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., Yang, H., Liu, X., He, Z., Mao, L., Wang, J. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95.CrossRefGoogle Scholar
  12. Koutmos, M., Pejchal, R., Bomer, T.M., Matthews, R.G., Smith, J.L., Ludwig, M.L. 2008. Metal active site elasticity linked to activation of homocysteine in methionine synthases. Proc. Natl. Acad. Sci. U.S.A. 105:3286–3291.CrossRefGoogle Scholar
  13. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.CrossRefGoogle Scholar
  14. Ling, H.Q., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., Fan, H., Li, D., Dong, L., Tao, Y., Gao, C., Wu, H., Li, Y., Cui, Y., Guo, X., Zheng, S., Wang, B., Yu, K., Liang, Q., Yang, W., Lou, X., Chen, J., Feng, M., Jian, J., Zhang, X., Luo, G., Jiang, Y., Liu, J., Wang, Z., Sha, Y., Zhang, B., Wu, H., Tang, D., Shen, Q., Xue, P., Zou, S., Wang, X., Liu, X., Wang, F., Yang, Y., An, X., Dong, Z., Zhang, K., Zhang, X., Luo, M.C., Dvorak, J., Tong, Y., Wang, J., Yang, H., Li, Z., Wang, D., Zhang, A., Wang, J. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90.CrossRefGoogle Scholar
  15. Lozada-Ramirez, J.D., Martinez-Martinez, I., Garcia-Carmona, F., Sanchez-Ferrer, A. 2008. Cloning, overexpression, purification, and characterization of S-adenosylhomocysteine hydrolase from Corynebacterium efficiens YS-314. Biotechnol. Progr. 24:120–127.CrossRefGoogle Scholar
  16. Lyi, S.M., Heller, L.I., Rutzke, M., Welch, R.M., Kochian, L.V., Li, L. 2005. Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol. 138:409–420.CrossRefGoogle Scholar
  17. Lyi, S.M., Zhou, X., Kochian, L.V., Li, L. 2007. Biochemical and molecular characterization of the homocysteine S-methyltransferase from broccoli (Brassica oleracea var. italica). Phytochem. 68:1112–1119.CrossRefGoogle Scholar
  18. Lyons, G.H., Judson, G.J., Ortiz-Monasterio, I., Genc, Y., Stangoulis, J.C., Graham, R.D. 2005. Selenium in Australia: selenium status and biofortification of wheat for better health. J. Trace Elem. Med. Bio. 19:75–82.CrossRefGoogle Scholar
  19. Millian, N.S., Garrow, T.A. 1998. Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch. Biochem. Biophys. 356:93–98.CrossRefGoogle Scholar
  20. Neuhierl, B., Böck, A. 1996. On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur. J. Biochem. 239:235–238.PubMedGoogle Scholar
  21. Neuhierl, B., Thanbichler, M., Lottspeich, F., Böck, A. 1999. A family of S-methylmethionine-dependent thiol/ selenol methyltransferases – Role in selenium tolerance and evolutionary relation. J. Biolog. Chem. 274:5407–5414.CrossRefGoogle Scholar
  22. Peariso, K., Goulding, C.W., Huang, S., Matthews, R.G., Penner-Hahn, J.E. 1998. Characterization of the zinc binding site in methionine synthase enzymes of Escherichia coli: The role of zinc in the methylation of homocysteine. J. Am. Chem. Soc. 120:8410–8416.CrossRefGoogle Scholar
  23. Liu, P., Zhou, J.P., Xu, X.L., Hao, Q.Q., Wen, X.Y., Wang, L.,Tian, Y.P. 2014. Activity assay and preservation of S-homocysteine methyltransferas. International Journal of Laboratory Medicine 35:1526–1528.Google Scholar
  24. Peng, A., and Yang, C.L. 1991. Examination of the roles of selenium in the Kaschin-Beck disease. Biol. Trace Elem. Res. 28:1–9.CrossRefGoogle Scholar
  25. Ranocha, P., Bourgis, F., Ziemak, M.J., Rhodes, D., Gage, D.A., Hanson, A.D. 2000. Characterization and functional expression of cDNAs encoding methionine-sensitive and insensitive homocysteine S-methyltransferases from Arabidopsis. J. Biolog. Chem. 275:15962–15968.CrossRefGoogle Scholar
  26. Ranocha, P., McNeil, S.D., Ziemak, M.J., Li, C., Tarczynski, M.C., Hanson, A.D. 2001. The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Plant J. 25:575–584.CrossRefGoogle Scholar
  27. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989. Molecular cloning: A laboratory manual: 2nd ed. Immunology 49:895–909.Google Scholar
  28. Schiavon, M., Pilon-Smits, E.A. 2017. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. J. Environ. Qual. 46:10–19.CrossRefGoogle Scholar
  29. Sors, T.G., Ellis, D.R., Salt, D.E. 2005. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 86:373–389.CrossRefGoogle Scholar
  30. Sors, T.G., Martin, C.P., Salt, D.E. 2009. Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J. 59:110–122.CrossRefGoogle Scholar
  31. Szira, F., Monostori, I., Galiba,G., Rakszegi, M., Bálint, A.F. 2014. Micronutrient Contents and Nutritional Values of Commercial Wheat Flours and Flours of Field-grown Wheat Varieties – A Survey in Hungary. Cereal Res. Commun. 42:293–302.CrossRefGoogle Scholar
  32. Thomson, C.D. 2004. Assessment of requirements for selenium and adequacy of selenium status: a review. Eur. J. Clin. Nutr. 58:391–402.CrossRefGoogle Scholar
  33. White, P.J. 2016. Selenium accumulation by plants. Ann. Bot. 117:217–235.PubMedGoogle Scholar
  34. White, P.J., Brown, P.H. 2010. Plant nutrition for sustainable development and global health. Ann. Bot. 105:1073–1080.CrossRefGoogle Scholar
  35. Zhao, D.Y., Sun, F.L., Zhang, B., Zhang, Z.Q., Yin, L.Q. 2015. Systematic Comparisons of Orthologous Selenocysteine Methyltransferase and Homocysteine Methyltransferase Genes from Seven Monocots Species. Notulae Scientia Biologicae 7:210–216.CrossRefGoogle Scholar
  36. Zhu, L., Jiang, C.J., Deng, W.W., Gao, X., Wang, R.J., Wan, X.C. 2007. Cloning and expression of selenocysteine methyltransferase cDNA from Camellia sinensis. Act. Physiol. Plant. 30:167–174.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • L. J. Wu
    • 1
    • 2
  • Y. Shang
    • 1
    • 2
  • T. Liu
    • 1
    • 2
  • W. J. Chen
    • 1
    • 3
  • B. L. Liu
    • 1
    • 3
  • L. Q. Zhang
    • 4
  • D. C. Liu
    • 4
  • B. Zhang
    • 1
    • 3
    Email author
  • H. G. Zhang
    • 1
    • 3
    Email author
  1. 1.Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Qinghai Province Key Laboratory of Crop Molecular BreedingXiningChina
  4. 4.Triticeae Research InstituteSichuan Agricultural UniversityChengduChina

Personalised recommendations