Cereal Research Communications

, Volume 46, Issue 2, pp 253–262 | Cite as

Influence of salinity and osmotic stress on germination process in an old sicilian landrace and a modern cultivar of Triticum Durum Desf.

  • C. Maucieri
  • C. Caruso
  • S. Bona
  • M. Borin
  • A. C. BarberaEmail author
  • V. Cavallaro
Open Access


In many world regions, osmotic and salt stresses are becoming the primary environmental conditions limiting successful establishment of crops. The old durum wheat landraces may provide a source of genes useful to enhance crop resilience to the abiotic stresses of dryland areas or foreseen as a result of climate change. With this in mind, in order to determine the effects of salt and osmotic stresses on durum wheat germination, an old Sicilian durum wheat landrace “Timilia” and a relatively recent cultivar “Mongibello” were investigated at various iso-osmotic solutions of NaCl and mannitol at osmotic potentials of: 0 − control, −0.125, −0.250, −0.500 and −0.750 MPa.

Under stress conditions, different germination and early growth behavior was observed in the two durum wheat genotypes. Timilia presented almost stable germination even at the highest osmotic stresses (96.7% and 88.3% seed germination at 0 and −0.750 MPa, respectively) showing a higher capacity of seed imbibition than Mongibello. The latter thus showed a higher sensitivity than the old landrace to the studied stresses. The variability ascertained in the response to salinity stress indicate that Timilia could be a source of interesting genes for breeding programs.


durum wheat seed germination salinity stress osmotic stress old and modern durum wheat genotypes 

Supplementary material

42976_2018_4602253_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1233 KB.


  1. Almansouri, M., Kinet, J.M., Lutts, S. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254.CrossRefGoogle Scholar
  2. Bağci, S.A., Ekiz, H., Yilmaz, A. 2007. Salt tolerance of sixteen wheat genotypes during seedling growth. Turk. J. Agric. For. 31:363–372.Google Scholar
  3. Barbera, A.C., Maucieri, C., Cavallaro, V., Ioppolo, A., Spagna, G. 2013. Effects of spreading olive mill waste-water on soil properties and crops, a review. Agr. Water Manage. 119:43–53.CrossRefGoogle Scholar
  4. Barbera, A.C., Maucieri, C., Ioppolo, A., Milani, M., Cavallaro, V. 2014. Effects of olive mill wastewater physico-chemical treatments on polyphenol abatement and Italian ryegrass (Lolium multiflorum Lam.) germinability. Water Res. 52:275–281.CrossRefGoogle Scholar
  5. Borin, M., Barbera, A.C., Milani, M., Molari, G., Zimbone, S.M., Toscano, A. 2013. Biomass production and N balance of giant reed (Arundo donax L.) under high water and N input in Mediterranean environments. Eur. J. Agron. 51:117–119.CrossRefGoogle Scholar
  6. Campi, P., Navarro, A., Palumbo, A.D., Mastrangelo, M., Lonigro, A., Mastrorilli, M. 2015. Bioenergy productivity of sugar beet irrigated with reclaimed wastewaters. Ital. J. Agron. 10:155–159.CrossRefGoogle Scholar
  7. Campi, P., Navarro, A., Palumbo, A.D., Solimando, M., Lonigro, A., Mastrorilli, M. 2014. Productivity of energy sorghum irrigated with reclaimed wastewaters. Ital. J. Agron. 9:115–119.CrossRefGoogle Scholar
  8. Cavallaro, V., Barbera, A.C., Maucieri, C., Gimma, G., Scalisi, C., Patane, C. 2016. Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecol. Eng. 95:557–566.CrossRefGoogle Scholar
  9. Dinelli, G., Marotti, I., Di Silvestro, R., Bosi, S., Bregola, V., Accorsi, M., Di Loreto, A., Benedettelli, S., Ghiselli, L., Catizone, P. 2013. Agronomic, nutritional and nutraceutical aspects of durum wheat (Triticum durum Desf.) cultivars under low input agricultural management. Ital. J. Agron. 8:85–93.Google Scholar
  10. Dinelli, G., Segua-Carretero, A., Di Silvestro, R., Marotti, I., Fu, S., Benedettelli, S., Ghiselli, L., Fernandez-Gutierrez, A. 2009. Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 1216:7229–7240.CrossRefGoogle Scholar
  11. Ellis, R.H., Roberts, E.H. 1981. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. (Netherlands).Google Scholar
  12. Gallo, G., Bianco, M.L., Bognanni, R., Saimbene, G., Orlando, A., Grillo, O., Saccone, R., Venora, G. 2010. Durum wheat bread: Old Sicilian varieties and improved ones. J. Agric. Sci. Technol. 4(4): 10–17.Google Scholar
  13. Gholamin, R., Khayatnezhad, M. 2013. The effects of water and salt stresses on germination in two bread wheat genotypes. Afr. J. Biotechnol. 10:17789–17792.Google Scholar
  14. Kaveh, H., Nemati, H., Farsi, M., Jartoodeh, S.V. 2011. How salinity affect germination and emergence of tomato lines. J. Biodivers. Environ. Sci. 5:159–163.Google Scholar
  15. Lutts, S., Kinet, J.M., Bouharmont, J. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J. Exp. Bot. 46(12):1843–1852.CrossRefGoogle Scholar
  16. Machado Neto, N.B., Saturnino, S.M., Bomfim, D.C., Custódio, C.C. 2004. Water stress induced by mannitol and sodium chloride in soybean cultivars. Braz. Arch. Biol. Techn. 47(4):521–529.CrossRefGoogle Scholar
  17. Mavi, M.S., Marschner, P., Chittleborough, D.J., Cox, J.W., Sanderman, J. 2012. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biol. Biochem. 45:8–13.CrossRefGoogle Scholar
  18. Muhammad, Z., Hussain, F. 2012. Effect of NaCl salinity on the germination and seedling growth of seven wheat genotypes. Pakistan J. Bot. 44:1845–1850.Google Scholar
  19. Naspetti, S., Bodini, A. 2008. Consumer perception of local and organic products: Substitution or complementary goods?. Int. J. Interdiscip. Soc. Sci. 3:111–122.Google Scholar
  20. Palumbo, M., Blangiforti, S., Cambrea, M., Gallo, G., Licciardello, S., Spina, A. 2008. Sicilian durum wheat landraces for production of traditional breads. In: Proceedings of the International Durum Wheat Symposium “From seed to pasta: the durum wheat chain”, Bologna 2008:132.Google Scholar
  21. Paranychianakis, N.V., Chartzoulakis, K.S. 2005. Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agr. Ecosyst. Environ. 106:171–187.CrossRefGoogle Scholar
  22. Piergiovanni, A.R. 2013. Evaluation of genetic variation and grain quality of old bread wheat varieties introduced in north-western Italian environments. Genet. Resour. Crop Ev. 60:325–333.CrossRefGoogle Scholar
  23. Rawson, H.M., Richards, R.A., Munns, R. 1988. An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. Crop Pasture Sci. 39(5):59–772.CrossRefGoogle Scholar
  24. Reif, J.C., Zhang, P., Dreisigacker, S., Warburton, M.L., van Ginkel, M., Hoisington, D., Bohn, M., Melchinger, A.E. 2005. Wheat genetic diversity trends during domestication and breeding. Theor. Appl. Genet. 110:859–864.CrossRefGoogle Scholar
  25. Royo, A., Abió, D. 2003. Salt tolerance in durum wheat cultivars. Span. J. Agric. Res. 1(3):27–35.CrossRefGoogle Scholar
  26. Sourour, A., Neila, R., Zoubeir, C., Saddreddine, B., Feker, K., Themir, B., Mayada, M., Mongi, B.Y. 2014. Effect of salt stress (sodium chloride) on germination and seedling growth of durum wheat (Triticum durum Desf.) genotypes. Int. J. Biodivers. Conserv. 6:320–325.CrossRefGoogle Scholar
  27. Tanksley, S.D., McCouch, S.R. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066.CrossRefGoogle Scholar
  28. Thomas, J.C., Sepahi, M., Arendall, B., Bohnert, H.J. 1995. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ. 18:801–806.CrossRefGoogle Scholar
  29. Wenkert, W., Lemon, E.R., Sinclair, T.R. 1978. Leaf elongation and turgor pressure in field-grown soybean. Agron. J. 70(5):761–764.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • C. Maucieri
    • 1
  • C. Caruso
    • 1
    • 2
  • S. Bona
    • 1
  • M. Borin
    • 1
  • A. C. Barbera
    • 2
    • 3
    Email author
  • V. Cavallaro
    • 3
  1. 1.Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAEUniversity of Padua, Agripolis CampusLegnaro (PD)Italy
  2. 2.Department of Agriculture, Food and Environment (Di3A)University of CataniaCatania (CT)Italy
  3. 3.Trees and Timber Institute (IVALSA)National Research Council (CNR)Catania (CT)Italy

Personalised recommendations