Advertisement

Cereal Research Communications

, Volume 47, Issue 1, pp 11–21 | Cite as

Effects of Alien Substitutions of Chromosomes of Homoeologous Group 7 on the Heading Time of Wheat–barley Substitution Lines (Triticum aestivum L. – Hordeum marinum ssp. gussoneanum 4x Hudson)

  • E. V. Chumanova
  • T. T. EfremovaEmail author
  • N. V. Trubacheeva
  • L. A. Pershina
Genetics

Abstract

The effects of alien substitutions of chromosomes on the heading time of ditelosomic (DT) wheat–barley substitution lines in which the chromosome 7HLmar from Hordeum marinum ssp. gussoneanum 4x replaced the chromosomes 7A, 7B and 7D of common wheat were studied. The plants were grown under short and long day illumination in greenhouse and in the field. The lines studied were found to differ in response to the length of the day. Under short day conditions, DT7HLmar(7B) and DT7HLmar(7A) showed an increase in the period before heading. In this case, the substitution effect of chromosome 7B was more significant than the effect of chromosome 7A. Under these conditions, the substitution of chromosome 7D did not have a significant effect on the heading time. Under long day conditions in the greenhouse and under natural conditions of a long day in the Novosibirsk region, substitution lines came into ear earlier than under a short day conditions and did not differ in the heading time. Allele-specific primers established the allelic composition of the genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in ditelosomic lines. It was shown that the two DT7HLmar(7A) and DT7HLmar(7D) lines have the same genotype -VRN-A1b/VRN-B1c/vrn-D1/ vrn-B3 and that the DT7HLmar(7B) line has the genotype -VRN-A1a/VRN-B1c/vrn-D1. The results show that regardless of the genotype for the Vrn genes, the wheat-barley substitution lines react to the change in the photoperiod, especially in the absence of chromosomes 7B and 7A.

Keywords

barley Hordeum marinum 4x wheat–barley substitution lines ear emergence time photoperiod genes vernalization genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliev, E.B., Maystrenko, O.I. 1986. A precise determination of number of genes involved in photoperiodic response in spring wheats with different sensitivity to natural short day light. Cereal Res. Commun. 14:129–131.Google Scholar
  2. Beales, J., Turner, A., Griffiths, S., Snape, J.W., Laurie, D.A. 2007. A pseudo-response regulator is misex-pressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115:721–733.CrossRefGoogle Scholar
  3. Bothmer, R., Jacobsen, N., Baden C., Jorgensen, R., Linde-Laursen, I. 1991. An ecogeographical study of the genus Hordeum. IBPGR, 1991. Italy, Rome, 127 p.Google Scholar
  4. Bonnin, I., Rousset, M., Madur, D., Sourdille, P., Dupuits, C., Brunel, D., Goldringer, I. 2008. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor. Appl. Genet. 116:383–394.CrossRefGoogle Scholar
  5. Börner, A., Buck-Sorlin, G.H., Hayes, P.M., Malyshev, S., Korzun, V. 2002. Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132. doi:10.1046/j.1439-0523.2002.00691.x.CrossRefGoogle Scholar
  6. Cane, K., Eagles, H.A., Laurie, D.A., Trevaskis, B., Vallance, N., Eastwood, R.F., Gororo, N.N., Kuchel, H., Martin, P.J. 2013. Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat. Crop and Pasture Science. 64:100–114.CrossRefGoogle Scholar
  7. Ceoloni, C., Jauhar, P.P. 2006. Chromosome engineering of the durum wheat genome: strategies and applications of potential breeding value. In: Singh, R.J., Jauhar, P.P. (eds) Genetic resources, chromosome engineering, and crop improvement: cereals. Boca Raton, FL: CRC Press, Taylor & Francis Group, pp. 27–59.CrossRefGoogle Scholar
  8. Chen, F., Gao, M., Zhang, J., Zuo, A., Shang, X., Cui, D. 2013. Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China. BMC Plant Biol. 13:199.CrossRefGoogle Scholar
  9. Edwards, K., Johnstone, C., Thompson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR Analysis. Nucl. Acids Res. 19:1349.CrossRefGoogle Scholar
  10. Efremova, T.T., Maystrenko, O.I., Arbuzova, V.S., Laikova, L.I., Panina, G.M., Popova, O.M., Berezova, O.V. 2006. Effect of alien 5R(5A) chromosome substitution on ear-emergence time and winter hardiness in wheat-rye substitution lines. Euphytica 151:145–153.CrossRefGoogle Scholar
  11. Efremova, T.T., Arbuzova, V.S., Leonova, I.N., Makhmudova, K. 2011. Multiple allelism in the Vrn-B1 locus of common wheat. Cereal Res. Comm. 39(1):12–21.CrossRefGoogle Scholar
  12. Efremova, T., Arbuzova,V., Trubacheeva, N., Ocadchaya, T., Chumanova, E., Pershina, L. 2013. Substitution of Hordeum marinum ssp. gussoneanum chromosome 7HL into wheat homoeologous group-7. Euphytica 192:251–257.CrossRefGoogle Scholar
  13. Efremova, T.T., Chumanova, E.V., Trubacheeva, N.V., Pershina, L.A. 2018. Compensation ability between the chromosomes of homoeologous group 7 of Triticum aestivum L. and Hordeum marinum ssp. gussoneanum Hudson (2n = 28) and analysis of the transmission frequency of alien 7H1Lmar chromosome through gametes in the progeny of wheat–barley substitution lines. Russ. J. Genet. 54:1050–1058.CrossRefGoogle Scholar
  14. Farkas, A., Molnár, I., Kiss, T., Karsai, I., Molnár-Láng, M. 2014. Effect of added barley chromosomes on the flowering time of new wheat/winter barley addition lines in various environments. Euphytica 195:45–55.CrossRefGoogle Scholar
  15. Fu, D., Szucs, P., Yan, L., Helguera, M., Skinner, J.S., von Zitzewitz, J., Hayes, P.M., Dubcovsky, J. 2005. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Gen. Genomics 273:54–65.CrossRefGoogle Scholar
  16. Garthwaite, A.J., Von Bothmer, R., Colmer, T.D. 2005. Salt tolerance in wild Hordeum species associated with restricted entry of Na+ and Cl into the shoots. J. Exp. Bot. 56:2365–2378.CrossRefGoogle Scholar
  17. Guo, Z., Song, Y., Zhou, R., Ren, Z., Jia, J. 2010. Discovery, evaluation and distribution of haplotypes of the Ppd-D1 gene. New Phytol. 185:841–851.CrossRefGoogle Scholar
  18. Halloran, G.H., Boydell, C.W. 1967. Wheat chromosomes with genes for photoperiodic response. Can. J. Genet. Cytol. 22:394–398.CrossRefGoogle Scholar
  19. Islam, S., Malik, A.I., Islam, A.K.M.R., Colmer, T.D. 2007. Salt tolerance in a Hordeum marinum–Triticum aestivum amphiploid, and its parents. J. Exper. Botany 58:1219–1229.CrossRefGoogle Scholar
  20. Jakob, S.S., Ihlow, A., Blattner, F.R. 2007. Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)-niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Molecular Ecology 16:1713–1727.CrossRefGoogle Scholar
  21. Khlestkina, E.K., Giura, A., Röder, M.S., Börner, A. 2009. A new gene controlling the flowering response to photoperiod in wheat. Euphytica 165:579–585.CrossRefGoogle Scholar
  22. Kuchel, H., Hollamby, G., Langridge, P., Williams, K., Jefferies, S.P. 2006. Identification of genetic loci associated with ear emergence in bread wheat. Theor. Appl. Genet. 113:1103–1112.CrossRefGoogle Scholar
  23. Law, C.N. 1972. The analysis of inter-varietal chromosome substitutions in wheat and their first generation hybrids. Heredity 28:169–179.CrossRefGoogle Scholar
  24. Law, C.N., Worland, A.J., Giorgi, B. 1976. The genetic control of ear emergence by chromosomes 5A and 5D of wheat. Heredity 36:49–58.CrossRefGoogle Scholar
  25. Law, C.N., Sutka, J., Worland, A.J. 1978. A genetic study of day-length response in wheat. Heredity 41:185–191.CrossRefGoogle Scholar
  26. Law, C.N., Worland, A.J. 1997. Genetic analysis of some flowering time and adaptative traits wheat. New Phytologist 137:19–28.CrossRefGoogle Scholar
  27. Milec, Z., Tomková, L., Sumíová, T., Pánková, K. 2012. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol. Breeding 30:317–323.CrossRefGoogle Scholar
  28. Murai, K., Koba, T., Shimada, T. 1997. Effect of barley chromosome on heading characters in wheat-barley chromosome addition lines. Euphytica 96:281–287.CrossRefGoogle Scholar
  29. Pirasteh, B., Welsh, J.R. 1975. Monosomic analysis of photoperiod response in wheat. Crop. Sci. 15:503–0505.CrossRefGoogle Scholar
  30. Qi, L.L., Friebe, B., Zhang, P., Gill, B.S. 2007. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15:3–19.CrossRefGoogle Scholar
  31. Scherban, A.B., Efremova, T.T., Salina, E.A. 2012. Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol. Breeding 29:675–685.CrossRefGoogle Scholar
  32. Sears, E.R. 1954. The aneuploids of common wheat. Research Bulletin Missouri Agricultural Experiment Station. 572:1–59.Google Scholar
  33. Snape, J.W., Law, C.N., Parker, B.B., Worland, A.J. 1985. Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor. Appl. Genet. 71:518–526.CrossRefGoogle Scholar
  34. Snape, J.W., Butterworth, K., Whitechurch, E., Worland, A.J. 2001. Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190.CrossRefGoogle Scholar
  35. Worland, A.J., Börner, A., Korzun, V., Li, W.M., Petrovic, S., Sayers, E. J. 1998. The influence of photoperiod on the adaptability of European winter wheats. Euphytica 100:385–394.CrossRefGoogle Scholar
  36. Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J., Dubcovsky, J. 2004. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109:1677–1686.CrossRefGoogle Scholar
  37. Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., Dubcovsky, J. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA. 103:19581–19586.CrossRefGoogle Scholar
  38. Yoshida, T., Nishida, H., Zhu, J., Nitcher, R., Distelfeld, A., Akashi, Y., Kato, K., Dubcovsky, J. 2010. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor. Appl. Genet. 120:543–552.CrossRefGoogle Scholar
  39. Zhang, X.K., Xia, X.C., Xiao, Y.G., Dubcovsky, J., He, Z.H. 2008. Allelic variation at vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese common wheat cultivars and their association with growth habit. Crop Sci. 48:458–470.CrossRefGoogle Scholar
  40. Zhang, J., Wang, Y., Wu, S., Yang, J., Liu, H., Zhou, Y. 2012. A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor. Appl. Genet. 125:1697–1704.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • E. V. Chumanova
    • 1
  • T. T. Efremova
    • 1
    Email author
  • N. V. Trubacheeva
    • 1
  • L. A. Pershina
    • 1
  1. 1.The Federal Research Center Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations