Cereal Research Communications

, Volume 47, Issue 1, pp 1–10 | Cite as

The Complete Chloroplast Genome of Pearl Millet (Pennisetum glaucum (L.) R. Br.) and Comparative Analysis within the Family Poaceae

  • S. Raveendar
  • G. A. Lee
  • K. J. Lee
  • M. J. Shin
  • J. R. Lee
  • S. Y. Lee
  • G. T. Cho
  • K. H. MaEmail author
  • J. W. Chung


The complete chloroplast (cp) genome sequence of Pearl millet (Pennisetum glaucum [L.] R. Br.), an important grain and forage crop in the family Poaceae, is reported in this study. The complete cp genome sequence of P. glaucum is 138,172 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeat (IR) regions (22,275 bp) separated by a small single-copy (SSC) region (12,409 bp) and a large single-copy (LSC) region (81,213). The P. glaucum cp genome encodes 110 unique genes, 76 of which are protein-coding genes, 4 ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes and 18 duplicated genes in the IR region. Nine genes contain one or two introns. Whole genome alignments of cp genome were performed for genome-wide comparison. Locally collinear blocks (LCBs) identified among the cp genomes showed that they were well conserved with respect to gene organization and order. This newly determined cp genome sequence of P. glaucum will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.


chloroplast Pearl millet phylogenetic analysis quadripartite structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2019_4701001_MOESM1_ESM.pdf (1.6 mb)
The Complete Chloroplast Genome of Pearl Millet (Pennisetum glaucum (L.) R. Br.) and comparative analysis within the family Poaceae


  1. Allen, G.C., Flores-Vergara, M.A., Krasynanski, S., Kumar, S., Thompson, W.F. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1:2320–2325.CrossRefGoogle Scholar
  2. Burton, G.W. 1983. Breeding pearl millet. Plant Breed. Rev. 1:162–182.Google Scholar
  3. Cannarozzi, G.M., Schneider, A. 2012. Codon evolution : mechanisms and models. Trends Evol. Biol. 4:e8.CrossRefGoogle Scholar
  4. Cao, X., Wang J., Wang, H., Liu, S., Chen, L., Tian, X., Qin, H., Wang, L., Na, X., Qiao, Z. 2017. The complete chloroplast genome of Panicum miliaceum. Mitochondrial DNA Part B 2:43–45.CrossRefGoogle Scholar
  5. Ceresini, P.C., Silva, C.L.S.P., Missio, R.F., Souza, E.C., Fischer, C.N., Guillherme, I.R., Gregorio, I., Silva, E.H.T., Cicarelli, R.M.B., Silva, M.T.A., Garcia, J.F., Avelar, G.A., Porto Neto, L.R., Marçon, A.R., Bacci Junior, M., Marini, D.C. 2005. Satellyptus: analysis and database of microsatellites from ESTs of Eucalyptus. Genet. Mol. Biol. 28:589–600.CrossRefGoogle Scholar
  6. Curci, P.L., De Paola, D., Danzi, D., Vendramin, G.G., Sonnante, G. 2015. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS One 10:e0120589.CrossRefGoogle Scholar
  7. Daniell, H., Lin, C.S., Yu, M., Chang, W.J. 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17:134.CrossRefGoogle Scholar
  8. Darling, A.C.E., Mau, B., Blattner, F.R., Perna, N.T. 2004. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14:1394–1403.CrossRefGoogle Scholar
  9. Gao, L., Yi, X., Yang, Y.X., Su, Y.J., Wang, T. 2009. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol. Biol. 9:130.CrossRefGoogle Scholar
  10. Govindaraj, M., Selvi, B., Prabhu, D.A., Rajarathinam, S. 2009. Genetic diversity analysis of pearl millet (Pennisetum glauccum [L.] R. Br.) accessions. Afr J. Biotechnol. 8:6046–6052.CrossRefGoogle Scholar
  11. Hu, Z.B., Mbacke, B., Perumal, R. Guèye, M.C., Sy, O., Bouchet, S., Vara Prasad, P.V., Morris, G.P. 2015. Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): Comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16:ARTN 1048.CrossRefGoogle Scholar
  12. Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., Guo, Y., Lu, Y., Zhou, C., Fan, D., Weng, Q., Zhu, C., Huang, T., Zhang, L., Wang, Y., Feng, L., Furuumi, H., Kubo, T., Miyabayashi, T., Yuan, X., Xu, Q., Dong, G., Zhan, Q., Li, C., Fujiyama, A., Toyoda, A., Lu, T., Feng, Q., Qian, Q., Li, J., Han, B. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501.CrossRefGoogle Scholar
  13. Huang, Y.Y., Cho, S.T., Haryono, M., Kuo, C.H. 2017. Complete chloroplast genome sequence of common bermudagrass (Cynodon dactylon (L.) Pers.) and comparative analysis within the family Poaceae. PLoS One 12:e0179055.CrossRefGoogle Scholar
  14. ICRISAT, 1996. FAO: The World Sorghum and Millet Economies: Facts, Trends and Outlook vol 68. International Crops Research Institute for the Semi-Arid Tropics, and Rome, Italy: Food and Agricultural Organization of the United Nations, Patancheru, India.Google Scholar
  15. Kahlau, S., Aspinall, S., Gray, J.C., Bock, R. 2006. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J. Mol. Evol. 63:194–207.CrossRefGoogle Scholar
  16. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., Salzberg, S.L. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5:R12.CrossRefGoogle Scholar
  17. Liu, C.J., Witcombe, J.R., Hash, C.T., Busso, C.S., Pittaway, T.S., Nash, M., Gale, M.D. 1994. Use of molecular marker in sorghum and pearl millet breeding for developing countries. Oversease Development Administration, London U.K.Google Scholar
  18. Liu, F., Tembrock, L.R., Sun, C., Han, G., Guo, C., Wu, Z. 2016. The complete plastid genome of the wild rice species Oryza brachyantha (Poaceae). Mitochondrial DNA Part B 1:218–219.CrossRefGoogle Scholar
  19. Liu, F., Zhao, Y., Luo, D., Hong, D., Li, R. 2017. The complete chloroplast genome sequence of Oryza eichingeri (Poaceae). Mitochondrial DNA Part B 2:465–466.CrossRefGoogle Scholar
  20. Lohse, M., Drechsel, O., Kahlau, S., Bock, R. 2013. OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41:W575–W581.CrossRefGoogle Scholar
  21. Nah, G., Im, J.H., Lim, S.H., Kim, K.H., Choi, A.Y., Yook, M.J., Kim, S., Kim, C., Kim, D.S. 2016. Complete chloroplast genomes of two Miscanthus species. Mitochondrial DNA Part A 27:4359–4360.CrossRefGoogle Scholar
  22. Olmstead, R.G., Palmer, J.D. 1994. Chloroplast DNA Systematics – a Review of Methods and Data-Analysis. Am. J. Bot. 81:1205–1224.CrossRefGoogle Scholar
  23. Poncet, V., Lamy, F., Enjalbert, J., Joly, H., Sarr, A., Robert, T. 1998. Genetic analysis of the domestication syndrome in pearl millet (Pennisetum glaucum L., Poaceae): inheritance of the major characters. Heredity 81:648–658.CrossRefGoogle Scholar
  24. Rajaram, V., Nepolean, T., Senthilvel, S., Varshney, R.K., Vadez, V., Srivastava, R.K., Shah, T.M., Supriya, A., Kumar, S.K., Kumari, B.R., Bhanuprakash, A., Narasu, M.L., Riera-Lizarazu, O., Hash, C.T. 2013. Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14:159.CrossRefGoogle Scholar
  25. Ramakrishnan, M., Antony Ceasar, S., Duraipandiyan, V., Al-Dhabi, N.A., Ignacimuthu, S. 2016. Assessment of genetic diversity, population structure and relationships in Indian and non-Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn) using genomic SSR markers. SpringerPlus 5:1–11.CrossRefGoogle Scholar
  26. Raubeson, L.A., Peery, R., Chumley, T.W., Dziubek, C., Fourcade, H.M., Boore, J.L., Jansen, R.K. 2007. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8:174.CrossRefGoogle Scholar
  27. Saarela, J.M., Wysocki, W.P., Barrett, C.F., Soreng, R.J., Davis, J.I., Clark, L.G., Kelchner, S.A., Pires, J.C., Edger, P.P., Mayfield, D.R., Duvall, M.R. 2015. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes. AoB PLANTS 7:plv046.CrossRefGoogle Scholar
  28. Saski, C., Lee, S.B., Fjellheim, S., Guda, C., Jansen, R.K., Luo, H., Tomkins, J., Rognli, O.A., Daniell, H., Clarke, J.L. 2007. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor. Appl. Genet. 115:591.CrossRefGoogle Scholar
  29. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725–2729.CrossRefGoogle Scholar
  30. Thiel, T., Michalek, W., Varshney, R.K., Graner, A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106:411–422.CrossRefGoogle Scholar
  31. Tsuruta, S., Ebina, M., Kobayashi, M., Takahashi, W. 2017. Complete chloroplast genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative genomics and evolution of the saccharum complex. PLoS One 12:e0169992.CrossRefGoogle Scholar
  32. Wu, P., Zhou, C., Cheng, S., Wu, Z., Lu, W., Han, J., Chen, Y., Chen, Y., Ni, P., Wang, Y., Xu, X., Huang, Y., Song, C., Wang, Z., Shi, N., Zhang, X., Fang, X., Yang, Q., Jiang, H., Chen, Y., Li, M., Wang, Y., Chen, F., Wang, J., Wu, G. 2015. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J. 81:810–821.CrossRefGoogle Scholar
  33. Wyman, S.K., Jansen, R.K., Boore, J.L. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255.CrossRefGoogle Scholar
  34. Yang, J.B., Tang, M., Li, H.T., Zhang, Z.R., Li, D.Z. 2013. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol. Biol. 13:84.CrossRefGoogle Scholar
  35. Yap, J.Y., Rohner, T., Greenfield, A., Van Der Merwe, M., McPherson, H., Glenn, W., Kornfeld, G., Marendy, E., Pan, A.Y., Wilton, A., Wilkins, M.R., Rossetto, M., Delaney, S.K. 2015. Complete chloroplast genome of the wollemi pine (Wollemia nobilis): Structure and evolution. PLoS One 10:e0128126.CrossRefGoogle Scholar
  36. Young, H.A., Lanzatella, C.L., Sarath, G., Tobias, C.M. 2011. Chloroplast genome variation in upland and lowland switchgrass. PLoS One 6:e23980.CrossRefGoogle Scholar
  37. Zhang, Y., Nie, X., Jia, X., Zhao, C., Biradar, S.S., Wang, L., Du, X., Weining, S. 2012. Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. Aust. J. Bot. 60:461–470.CrossRefGoogle Scholar
  38. Zhou, M., Long, W., Li, X. 2008. Patterns of synonymous codon usage bias in chloroplast genomes of seed plants. For. Stud. China 10:235.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • S. Raveendar
    • 1
  • G. A. Lee
    • 1
  • K. J. Lee
    • 1
  • M. J. Shin
    • 1
  • J. R. Lee
    • 1
  • S. Y. Lee
    • 1
  • G. T. Cho
    • 1
  • K. H. Ma
    • 1
    Email author
  • J. W. Chung
    • 2
  1. 1.National Agrobiodiversity Center, National Institute of Agricultural ScienceRural Development AdministrationJeonjuRepublic of Korea
  2. 2.Department of Industrial Plant Science and TechnologyChungbuk National UniversityCheongju, ChungbukRepublic of Korea

Personalised recommendations